Skip to main content
Log in

Self-improving Poincaré-Sobolev type functionals in product spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper we give a geometric condition which ensures that (q, p)-Poincaré-Sobolev inequalities are implied from generalized (1, 1)-Poincaré inequalities related to L1 norms in the context of product spaces. The concept of eccentricity plays a central role in the paper. We provide several (1, 1)-Poincaré type inequalities adapted to different geometries and then show that our self-improving method can be applied to obtain special interesting Poincaré-Sobolev estimates. Among other results, we prove that for each rectangle R of the form R = I1 × I2 ≢ ℝn where \({I_1} \subset {\mathbb{R}^{{n_1}}}\) and \({I_2} \subset {\mathbb{R}^{{n_2}}}\) are cubes with sides parallel to the coordinate axes, we have that

$${\left( {\frac{1}{{w(R)}}\int_R {|f - {f_R}{|^{p_{\delta ,w}^*}}wdx} } \right)^{\frac{1}{{p_{\delta ,w}^*}}}} \leqslant c{(1 - \delta )^{\frac{1}{p}}}[w]_{{A_{1,\Re }}}^{\frac{1}{p}}({a_1}(R) + {a_2}(R)),$$

where δ ∈(0, 1), \(\delta \in (0,1),w \in {A_{1,\Re }},\frac{1}{p} - \frac{1}{{p_{\delta ,w}^*}} = \frac{\delta }{n}\frac{1}{{1 + \log [w]{A_{1,\Re }}}}\) and ai(R) are bilinear analogues of the fractional Sobolev seminorms \({[u]_{{W^{\delta ,p}}(Q)}}\) (see Theorem 2.18). This is a biparameter weighted version of the celebrated fractional Poincaré-Sobolev estimates with the gain \({(1 - \delta )^{\frac{1}{p}}}\) due to Bourgain-Brezis-Minorescu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Acosta and R. Durán, An optimal Poincaré inequality in L1for convex domains, Proc. Amer. Math. Soc. 132 (2004), 195–202.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, Berlin, 1996.

    Book  MATH  Google Scholar 

  3. D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), 1032–1074.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for ws,p when s ↑ 1 and applications, J. Anal. Math. 87 (2002), 77–101.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Brezis, J. Van Schaftingen and P.-L. Yung, A surprising formula, for Sobolev norms and related topics, Proc. Natl. Acad. Sci. USA 118 (2021). Article no. e2025254118.

  6. J. Canto and C. Perez, Extensions of the John-Nirenberg theorem and applications, Proc. Amer. Math. Soc. 149 (2021), 1507–1525.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Canto, C. Perez and E. Rela, Minimal conditions for BMO, J. Funct. Anal. 282 (2022), Article no. 109296.

  8. E. Cejas, I. Drelichman and J. Martínez-Perales, Improved, fractional Poincaré type inequalities on John domains, Ark. Mat. 57 (2019), 285–316.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Chua, Weighted Sobolev inequalities of mixed norm, Real Anal. Exchange 21 (1995), 555–571.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Chua, Extension theorems on weighted Sobolev spaces and some applications, Canad. J. Math. 58 (2006), 492–528.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Domínguez and M. Milman, New Brezis-Van Schaftingen-Yung Sobolev type inequalities connected with maximal inequalities and one parameter families of operators, arXiv:2010.15873 [math.FA].

  13. I. Drelichman and R. G. Durán, The Bourgain-Brézis-Mironescu formula in arbitrary bounded domains, Proc. Amer. Math. Soc. 150 (2022), 701–708.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Dyda, L. Ihnatsyeva, L. and A. Vähäkangas, On improved, fractional Sobolev-Poincaré inequalities, Ark. Mat. 54 (2016), 437–454.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Franchi, C. Pérez and R. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), 108–146.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Fujii, Weighted, bounded, mean oscillation and singular integrals, Math. Japon. 22 (1977/78), 529–534.

    MathSciNet  MATH  Google Scholar 

  17. P. Hajlasz, Sobolev inequalities, truncation method, and John domains, in Papers on Analysis Univ. Jyväskylä, Jyväskylä, 2001, pp. 109–126.

    Google Scholar 

  18. P. Hajlasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris 320 (1995), 1211–1215.

    MathSciNet  MATH  Google Scholar 

  19. J. Heinonen, P. Koskela, N. Shammugalingam and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces, Cambridge University Press, Cambridge, 2015.

    Book  Google Scholar 

  20. R. Hurri-Syrjänen and A. Vähäkangas, On fractional Poincaré inequalities, J. Anal. Math. 120 (2013), 85–104.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Hurri-Syrjänen, J. Martínez, C. Pérez and A. Vähäkangas, On the BBM-Phenomenon in Fractional Poincaré-Sobolev Inequalities with Weights, Internat. Math. Res. Notices, 2022; rnac246, https://doi.org/10.1093/imrn/rnac246.

  22. T. Hytönen and C. Pérez, Sharp weighted bounds involving A, Anal. PDE 6 (2013), 777–818.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Hytönen, C. Pérez and E. Rela, Sharp Reverse Hölder property for Aweights on spaces of homogeneous type, J. Funct. Anal. 263 (2012), 3883–3899.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Karagulyan, Exponential estimates for the Calderón-Zygmund operator and related problems of Fourier series, Mat. Zametki 71 (2002), no. 3, 398–411.

    MathSciNet  MATH  Google Scholar 

  25. J. Kinnunen, J. Lehrbäck and A. Vähäkangas, Maximal Function Methods for Sobolev Spaces, American Mathematical Society, Providence, RI, 2021.

    Book  MATH  Google Scholar 

  26. A. Lerner and C. Pérez, Self-improving properties of generalized. Poincaré type inequalities through rearrangements, Math. Scand. 97 (2005), 217–234.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Logunov, L. Slavin, D. Stolyarov, V. Vasyunin and P. Zatitskiy, Weak integral conditions for BMO, Proc. Amer. Math. Soc. 143 (2015), 2913–2926.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Lu and C. Pérez, L1Lq Poincaré inequalities for 0 < q < 1 imply representation formulas, Acta Math. Sin. (Engl. Ser.) 18 (2002), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Lu and R. Wheeden, Poincaré inequalities, isoperimetric estimates, and representation formulas on product spaces, Indiana Univ. Math. J. 47 (1998), 123–151.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Luque, C. Pérez and E. Rela, Reverse Hölder property for strong weights and general measures, J. Geom. Anal. 27/1 (2017), 162–182.

    Article  MATH  Google Scholar 

  31. P. MacManus and C. Pérez, Generalized Poincaré inequalities: sharp self-improving properties, Internat. Math. Res. Notices 1998 (1998), 101–116.

    Article  MATH  Google Scholar 

  32. V. Maz’ya, Sobolev Spaces, Springer Berlin, 1985.

    Book  MATH  Google Scholar 

  33. V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), 230–238.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Milman, Notes on limits of Sobolev spaces and the continuity of interpolation scales, Trans. Amer. Math. Soc. 357 (2005), 3425–3442.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Orobitg and C. Pérez, Ap weights for nondoubling measures inn and applications, Trans. Amer. Math. Soc. 354 (2002), 2013–2033.

    Article  MathSciNet  MATH  Google Scholar 

  36. I. Parissis and E. Rela, Asymptotically sharp reverse Hölder inequalities for flat muckenhoupt weights, Indiana Univ. Math. J. 67 (2018), 2363–2391.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Pérez and E. Rela, Degenerate Poincaré-Sobolev inequalities, Trans. Amer. Math. Soc. 372 (2019), 6087–6133.

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, International Mathematics Research Notices 2 (1992), 27–38.

    Article  MATH  Google Scholar 

  39. X. Shi and A. Torchinsky, Poincaré and Sobolev inequalities in product spaces, Proc. Amer. Math. Soc. 118 (1993), 1117–1124.

    MathSciNet  MATH  Google Scholar 

  40. B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer, Berlin, 2000.

    Book  MATH  Google Scholar 

Download references

Acknowledgement

The last author is very grateful to Professors Oscar Dom´ınguez and Mario Milman for enlighteling conversations about the results concerning fractional (uniparametric) Poincar´e inequalities with extra gain like in Theorem 5.4. In particular, we acknowledge the very interesting work [M05].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezequiel Rela.

Additional information

M. E. C. is partially supported by grant PICT-2018-03017 (ANPCYT)

C. M. is partially supported by grants UBACyT 20020170100430BA, PICT 2018-03399 and PICT 2018-04027.

C. P. is supported by grant PID2020-113156GB-I00 of the Ministerio de Ciencia e Innovación (Spain), grant IT1615-22 of the Basque Government, and IKERBASQUE

E. R. is partially supported by grants UBACyT 20020170200057BA, PIP (CONICET) 11220110101018, by the Basque Government through the BERC 2014–2017 program, and by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 777822.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cejas, M.E., Mosquera, C., Pérez, C. et al. Self-improving Poincaré-Sobolev type functionals in product spaces. JAMA 149, 1–48 (2023). https://doi.org/10.1007/s11854-022-0244-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0244-1

Navigation