Skip to main content
Log in

Heat kernels and Besov spaces on metric measure spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let (M, ρ, μ) be a metric measure space satisfying the volume doubling condition. Assume also that (M, ρ, μ) supports a heat kernel satisfying the upper and lower Gaussian bounds. We study the problem of identity of two families of Besov spaces B sp, q and \(B_{p,q}^{s,{\cal L}}\), where the former one is defined using purely the metric measure structure of M, while the latter one is defined by means of the heat semigroup associated with the heat kernel. We prove that the identity \(B_{p,q}^s = B_{p,q}^{s,{\cal L}}\) holds for a range of parameters p, q, s given by some Hardy—Littlewood—Sobolev—Kato diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities, J. Funct. Anal. 278 (2020), Article no. 108459.

  2. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces II: BV functions and Gaussian heat kernel estimates, Calc. Var. Partial Differential Equations 59 (2020), Article no. 103.

  3. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates, Calc. Var. Partial Differential Equations 60 (2021), Article no. 170.

  4. N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385–475.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Auscher, On Necessary and Sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic operators onn and related estimates, Mem. Amer. Math. Soc. 186 (2007).

  6. P. Auscher and T. Hytönen, Orthonormal bases of regular wavelets in spaces of homogeneous type, Appl. Comput. Harmon. Anal. 34 (2013), 266–296.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer, Berlin—New York, 1976.

    Book  MATH  Google Scholar 

  8. O. V. Besov, On some families of functional spaces. Imbedding and extension theorems, Dokl. Akad. Nauk SSSR 126 (1959), 1163–1165.

    MathSciNet  MATH  Google Scholar 

  9. H.-Q. Bui, T. A. Bui and X. T. Duong, Weighted Besov and Triebel—Lizorkin spaces associated to operators, Forum Math. Sigma 8 (2020), Article no. e11.

  10. H.-Q. Bui, X. T. Duong and L. Yan, Calderón reproducing formulas and new Besov spaces associated with operators, Adv. Math. 229 (2012), 2449–2502.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Cao and A. Grigor’yan, Heat kernels and Besov spaces associated with second order divergence form elliptic operators, J. Fourier Anal. Appl. 26 (2020), Article no. 3.

  12. L. Chen, T. Coulhon, J. Feneuil and E. Russ, Riesz transform for 1 ≤ p ≤ 2 without Gaussian heat kernel bound, J. Geom. Anal. 27 (2017), 1489–1514.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Springer, Berlin, 2009.

    Book  MATH  Google Scholar 

  15. M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34–170.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 2011.

    MATH  Google Scholar 

  17. A. G. Georgiadis, G. Kerkyacharian, G. Kyriazis and P. Petrushev, Homogeneous Besov and Triebel—Lizorkin spaces associated to non-negative self-adjoint operators, J. Math. Anal. Appl. 449 (2017), 1382–1412.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Gogatishvili, P. Koskela and N. Shanmugalingam, Interpolation properties of Besov spaces defined on metric spaces, Math. Nachr. 283 (2010), 215–231.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Grafakos, L. Liu and D. Yang, Vector-valued singular integrals and maximal functions on spaces of homogeneous type, Math. Scand. 104 (2009), 296–310.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Grigor’yan, Heat kernels and function theory on metric measure spaces, in Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), American Mathematical Society, Providence, RI, 2003, pp. 143–172.

    MATH  Google Scholar 

  21. A. Grigor’yan, J. Hu and K.-S. Lau, Heat kernels on metric-measure spaces and an application to semi-linear elliptic equations, Trans. Amer. Math. Soc. 355 (2003), 2065–2095.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Grigor’yan and L. Liu, Heat kernel and Lipschitz—Besov spaces, Forum Math. 27 (2015), 3567–3613.

    MathSciNet  MATH  Google Scholar 

  23. A. Grigor’yan and A. Telcs, Two-sided estimates of heat kernels on metric measure spaces, Ann. Probab. 40 (2012), 1212–1284.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Haase, The Functional Calculus for Sectorial Operators, Birkhäuser, Basel, 2006.

    Book  MATH  Google Scholar 

  25. Y. Han, J. Li and C. Tan, Besov spaces via wavelets on metric spaces endowed with doubling measure, singular integral, and the T1 type theorem, Math. Methods Appl. Sci. 40 (2017), 3580–3598.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Han, J. Li and L. A. Ward, Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases, Appl. Comput. Harmon. Anal. 45 (2018), 120–169.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Han, D. Müller and D. Yang, A theory of Besov and Triebel—Lizorkin spaces on metric measure spaces modeled on Carnot—Carathéodory spaces, Abstr. Appl. Anal. 250 (2008), Article no. 893409.

  28. G. Hu, Besov and Triebel—Lizorkin spaces associated with non-negative self-adjoint operators, J. Math. Anal. Appl. 411 (2014), 753–772.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Hu and M. Zähle, Potential spaces on fractals, Studia Math. 170 (2005), 259–281.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Hytönen and A. Kairema, Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126 (2012), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Hytönen and O. Tapiola, Almost Lipschitz-continuous wavelets in metric spaces via a new randomization of dyadic cubes, J. Approx. Theory 185 (2014), 12–30.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Jonsson, Brownian motion on fractals and function spaces, Math. Z. 222 (1996), 495–504.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Kerkyacharian and P. Petrushev, Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces, Trans. Amer. Math. Soc. 367 (2015), 121–189.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Kumagai, Function spaces and stochastic processes on fractals, in Fractal Geometry and Stochastics III, Birkhäuser, Basel, 2004, pp. 221–234.

    Chapter  MATH  Google Scholar 

  35. P. Kunstmann and A. Ullmann, Rs-sectorial operators and generalized Triebel—Lizorkin spaces, J. Fourier Anal. Appl. 20 (2014), 135–185.

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Liu, D. Yang and W. Yuan, Besov-type and Triebel—Lizorkin-type spaces associated with heat kernels, Collect. Math. 67 (2016), 247–310.

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  38. D. Müller and D. Yang, A difference characterization of Besov and Triebel—Lizorkin spaces on RD-spaces, Forum Math. 21 (2009), 259–298.

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, Sci. Math. Jpn. 54 (2001), 473–487.

    MathSciNet  MATH  Google Scholar 

  40. K. Pietruska-Pałuba, On function spaces related to fractional diffusions on d-sets, Stochastics Stochastics Rep. 70 (2000), 153–164.

    Article  MathSciNet  MATH  Google Scholar 

  41. K. Pietruska-Pałuba, Heat kernel characterisation of Besov—Lipschitz spaces on metric measure spaces, Manuscripta Math. 131 (2010), 199–214.

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Sawano, Theory of Besov Spaces, Springer, Singapore, 2018.

    Book  MATH  Google Scholar 

  43. R. S. Strichartz, Function spaces on fractals, J. Funct. Anal. 198 (2003), 43–83.

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

    MATH  Google Scholar 

  45. H. Triebel, Theory of Function Spaces. II, Birkhäuser, Basel, 1992.

    Book  MATH  Google Scholar 

  46. H. Triebel, Theory of Function Spaces, Birkhäuser/Springer, Basel, 2010.

    MATH  Google Scholar 

  47. H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 2011.

    MATH  Google Scholar 

  48. D. Yang, Besov spaces on spaces of homogeneous type and fractals. Studia Math. 156 (2003), 15–30.

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Yang and Y. Lin, Spaces of Lipschitz type on metric spaces and their applications, Proc. Edinb. Math. Soc. (2) 47 (2004), 709–752.

    Article  MathSciNet  MATH  Google Scholar 

  50. W. Yuan, W. Sickel and D. Yang, Morrey and Campanato Meet Besov, Lizorkin and Triebel, Springer, Berlin, 2010.

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This work was done during a stay of the first author at the University of Bielefeld in 2017–2019. He would like to thank this university for the hospitality. The authors would like to thank the referee for his/her comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Cao.

Additional information

Jun Cao was supported by the NNSF of China (Grant No. 12071431) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LR22A010006)

Alexander Grigor’yan was supported by SFB1283 of the German Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Grigor’yan, A. Heat kernels and Besov spaces on metric measure spaces. JAMA 148, 637–680 (2022). https://doi.org/10.1007/s11854-022-0239-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0239-y

Navigation