Skip to main content
Log in

Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the sub-critical order Lane—Emden—Hardy equations

$${\left( { - {\rm{\Delta }}} \right)^m}u\left( x \right) = {{{u^p}\left( x \right)} \over {{{\left| x \right|}^a}}}\;\;\;\;{\rm{in}}\;{\mathbb{R}^n}$$
((0.1))

with n ≥ 3, \(1 \le m < {n \over 2}\), 0 ≤ a < 2m and p > 1. We establish Liouville theorems in the ranges \(1 < p < {{n + 2m - 2a} \over {n - 2m}}\) if 0 ≤ a < 2 and 1 < p < +∞ if 2 ≤ a < 2m for nonnegative classical solutions of equations (0.1), that is, the unique nonnegative solution is u ≡ 0. As an application, we derive a priori estimates and the existence of positive solutions to sub-critical order Lane—Emden equations in bounded domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bahri and J. M. Coron, The scalar-curvature problem on three-dimensional sphere, J. Funct. Anal. 95 (1991), 106–172.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. F. Bidaut-Véron and H. Giacomini, A new dynamical approach of Emden—Fowler equations and systems, Adv. Differential Equations 15 (2010), 1033–1082.

    MathSciNet  MATH  Google Scholar 

  3. H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of − Δu = V(x)eu in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223–1253.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271–297.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Cao and W. Dai, Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Royal Soc. Edinburgh Sect. A 149 (2019), 979–994.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. A. Chang and P. C. Yang, A perturbation result in prescribing scalar curvature on Sn, Duke Math. J. 64 (1991), 27–69.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. A. Chang and P. C. Yang, On uniqueness of solutions of n-th order differential equations in conformal geometry, Math. Res. Lett. 4 (1997), 91–102.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Chen and C. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J. 78 (1995), 315–334.

    MathSciNet  MATH  Google Scholar 

  9. W. Chen, W. Dai and G. Qin, Liouville type theorems, a priori estimates and existence of solutions for critical and super-critical order Hardy-Hénon type equations inn, preprint, arXiv:1808.06609 [math.AP].

  10. W. Chen and Y. Fang, Higher order or fractional order Hardy—Sobolev type equations, Bull. Inst. Math. Acad. Sin. (N.S.) 9 (2014), 317–349.

    MathSciNet  MATH  Google Scholar 

  11. W. Chen, Y. Fang and C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space, J. Funct. Anal. 265 (2013), 1522–1555.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math. 274 (2015), 167–198.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615–622.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Chen and C. Li, A priori estimates for solutions to nonlinear elliptic equations, Arch. Rational Mech. Anal. 122 (1993), 145–157.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math. (2) 145 (1997), 547–564.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, American Institute of Mathematical Science, Springfield, MO, 2010.

    MATH  Google Scholar 

  17. W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, Comm. Pure Appl. Anal. 12 (2013), 2497–2514.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math. 308 (2017), 404–437.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific, Singapore, 2020.

    Book  MATH  Google Scholar 

  20. W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330–343.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Cheng and S. Liu, A Liouville type theorem for higher order Hardy—Henon equation inn, J. Math. Anal. Appl. 444 (2016), 370–389.

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Dai, Y. Fang, J. Huang, Y. Qin and B. Wang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst. 39 (2019), 1389–1403.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Dai, Y. Fang and G. Qin, Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes, J. Differential Equations 265 (2018), 2044–2063.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Dai and G. Qin, Classification of nonnegative classical solutions to third-order equations, Adv. Math. 328 (2018), 822–857.

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Dai and G. Qin, Liouville type theorems for Hardy—Hénon equations with concave nonlinearities, Math. Nachr. 293 (2020), 1084–1093.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Fazly and N. Ghoussoub, On the Hénon—Lane—Emden conjecture, Discrete Contin. Dyn. Syst. 34 (2014), 2513–2533.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Gidas, W. Ni and L. Nirenberg, Symmetry and related properties via maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations inn, in Mathematical Analysis and Applications. Part A, Academic Press, New York—London, 1981, pp. 369–402.

    Google Scholar 

  29. B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525–598.

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. PDE 6 (1981), 883–901.

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Lei, Asymptotic properties of positive solutions of the Hardy—Sobolev type equations, J. Differential Equations 254 (2013), 1774–1799.

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math. 123 (1996), 221–231.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Y. Li, Prescribing scalar curvature on Sn and related problems, Part I, J. Differential Equations 120 (1995), 319–410.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Lin, A classification of solutions of a conformally invariant fourth order equation inn, Comment. Math. Helv. 73 (1998), 206–231.

    Article  MathSciNet  Google Scholar 

  35. E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems inN, Differential Integral Equations, 9 (1996), 465–479.

    MathSciNet  MATH  Google Scholar 

  36. E. Mitidieri and S. I. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001), 1–384.

    MathSciNet  MATH  Google Scholar 

  37. Q. Phan, Liouville-type theorems for polyharmonic Hénon—Lane—Emden system, Adv. Nonlinear Stud. 15 (2015), 415–432.

    Article  MathSciNet  MATH  Google Scholar 

  38. Q. Phan and P. Souplet, Liouville-type theorems and bounds of solutions of Hardy—Hénon equations, J. Diff. Equations 252 (2012), 2544–2562.

    Article  MATH  Google Scholar 

  39. P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic systems, Duke Math. J. 139 (2007), 555–579.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Schoen and D. Zhang, Prescribed scalar curvature on the n-spheres, Calc. Var. Partial Differential Equations 4 (1996), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Serrin and H. Zou, Non-existence of positive solutions of Lane—Emden systems, Differential Integral Equations 9 (1996), 635–653.

    MathSciNet  MATH  Google Scholar 

  42. P. Souplet, The proof of the Lane—Emden conjecture in four space dimensions, Adv. Math. 221 (2009), 1409–1427.

    Article  MathSciNet  MATH  Google Scholar 

  43. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  44. J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999), 207–228.

    Article  MathSciNet  MATH  Google Scholar 

  45. N. Zhu, Classification of solutions of a conformally invariant third order equation in3, Comm. Partial Differential Equations 29 (2004), 1755–1782.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading and valuable comments and suggestions that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Dai.

Additional information

Wei Dai is supported by the NNSF of China (No. 11971049 and 11501021), the Fundamental Research Funds for the Central Universities and the State Scholarship Fund of China (No. 201806025011).

Shaolong Peng is supported by the NNSF of China (No. 11971049).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Peng, S. & Qin, G. Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane—Emden—Hardy equations. JAMA 146, 673–718 (2022). https://doi.org/10.1007/s11854-022-0207-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0207-6

Navigation