Skip to main content
Log in

Comparison radius and mean topological dimension: Rokhlin property, comparison of open sets, and subhomogeneous C*-algebras

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let (X, Γ) be a free minimal dynamical system, where X is a compact separable Hausdorff space and Γ is a discrete amenable group. It is shown that, if (X, Γ) has a version of Rokhlin property (uniform Rokhlin property) and if C(X) ⋊ Γ has a Cuntz comparison on open sets, then the comparison radius of the crossed product C*-algebra C(X) ⋊ Γ is at most half of the mean topological dimension of (X, Γ).

These two conditions are shown to be satisfied if Γ = ℤ or if (X, Γ) is an extension of a free Cantor system and Γ has subexponential growth. The main tools being used are Cuntz comparison of diagonal elements of a subhomogeneous C*-algebra and small subgroupoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. P. Brown and N. Ozawa, C*-Algebras and Finite-Dimenisional Approximations, American Mathematical Society, Providence, RI, 2008.

    Google Scholar 

  2. L. O. Clark, Classifying the types of principal groupoid C*-algebras, J. Operator Theory 57 (2007), 251–266.

    MathSciNet  MATH  Google Scholar 

  3. J. Cuntz, Dimension functions on simple C*-algebras, Math. Ann. 233 (1978), 145–153.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Dixmier, C*-Algebras, North-Holland, Amsterdam—New York—Oxford, 1977.

    MATH  Google Scholar 

  5. D. Dou, Minimal subshifts of arbitrary mean topological dimension, Discrete Contin. Dyn. Syst. 37 (2017), 1411–1424.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Downarowicz and D. Huczek, Dynamical quasitilings of amenable groups, Bull. Pol. Acad. Sci. Math. 66 (2018), 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Downarowicz and G. Zhang, The comparison property of amenable groups, arXiv:1712.05129 [math.DS].

  8. E. G. Effros and F. Hahn, Locally Compact Transformation Groups and C*-Algebras, American Mathematical Society, Providence, RI, 1967.

    MATH  Google Scholar 

  9. G. A. Elliott, G. Gong and L. Li, On the classification of simple inductive limit C*-algebras. II. The isomorphism theorem, Invent. Math. 168 (2007), 249–320.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. A. Elliott, G. Gong, H. Lin and Z. Niu, On the classification of simple amenable C*-algebras with finite decomposition rank, II, arXiv:1507.03437 [math.OA].

  11. G. A. Elliott, G. Gong, H. Lin and Z. Niu, The classification of simple separable unital Z-stable locally ASH algebras, J. Funct. Anal. 12 (2017), 5307–5359.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. A. Elliott and Z. Niu, On the radius of comparison of a commutative C*-algebra, Canad. Math. Bull. 56 (2013), 737–744.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. A. Elliott and Z. Niu, All irrational extended rotation algebras are AF, Canad. J. Math. 67 (2015), 810–826.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. A. Elliott and Z. Niu, On the classification of simple amenable C*-algebras with finite decomposition rank, in Operator Algebras and their Applications: A Tribute to Richard V. Kadison, American Mathematical Society, Providence, RI, 2016, pp. 117–125.

    Chapter  Google Scholar 

  15. G. A. Elliott and Z. Niu, The C*-algebra of a minimal homeomorphism of zero mean dimension, Duke Math. J. 166 (2017), 3569–3594.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. A. Elliott, Z. Niu, L. Santiago and A. Tikuisis, Decomposition rank of approximately subhomogeneous C*-algebras, Forum Math. 32 (2020), 827–889.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Giol and D. Kerr, Subshifts and perforation, J. Reine Angew. Math. 639 (2010), 107–119.

    MathSciNet  MATH  Google Scholar 

  18. T. Giordano, I. F. Putnam and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. Reine Angew. Math. 469 (1995), 51–111.

    MathSciNet  MATH  Google Scholar 

  19. E. Glasner and B. Weiss, Weak orbit equivalence of Cantor minimal systems, Internat. J. Math. 6 (1995), 559–579.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Gong, On the classification of simple inductive limit C*-algebras. I. The reduction theorem, Doc. Math. 7 (2002), 255–461.

    MathSciNet  MATH  Google Scholar 

  21. G. Gong, H. Lin and Z. Niu, Classification of finite simple amenable Z-stable C*-algebras, I. C*-algebras with generalized tracial rank one, C. R. Math. Acad. Sci. Soc. R. Can. 42 (2020), 63–450.

    MathSciNet  Google Scholar 

  22. G. Gong, H. Lin and Z. Niu, Classification of finite simple amenable Z-stable C*-algebras, II. C*-algebras with rational generalized tracial rank one, C. R. Math. Acad. Sci. Soc. R. Can. 42 (2020), 451–539.

    MathSciNet  Google Scholar 

  23. M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom. 2 (1999), 323–415.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Gutman, Embeddingk-actions in cubical shifts andk-symbolic extensions, Ergodic Theory Dynam. Systems 31 (2011), 383–403.

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Gutman, E. Lindenstrauss and M. Tsukamoto, Mean dimension ofk-actions, Geom. Funct. Anal. 26 (2016), 778–817.

    Article  MathSciNet  MATH  Google Scholar 

  26. U. Haagerup, Quasitraces on exact C*-algebras are traces, C. R. Math. Acad. Sci. Soc. R. Can. 36 (2014), 67–92.

    MathSciNet  MATH  Google Scholar 

  27. R. H. Herman, I. F. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), 827–864.

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219–255.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Kerr, Dimension, comparison, and almost finiteness, J. Eur. Math. Soc. (JEMS) 22 (2020), 3697–3745.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Kerr and G. Szabo, Almost finiteness and the small boundary property, Comm. Math. Phys. 374 (2020), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  31. Q. Lin, Analytic structure of the transformation group C*-algebra associated with minimal dynamical systems, preprint.

  32. Q. Lin and N. C. Phillips, Direct limit decomposition for C*-algebras of minimal diffeomorphisms, in Operator Algebras and Applications, Mathematical Society of Japan, Tokyo, 2004, pp. 107–133.

    Chapter  MATH  Google Scholar 

  33. E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Etudes Sci. Publ. Math. 89 (2000), 227–262.

    Article  MATH  Google Scholar 

  34. E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  35. Z. Niu, Mean dimension and AH-algebras with diagonal maps, J. Funct. Anal. 266 (2014), 4938–4994.

    Article  MathSciNet  MATH  Google Scholar 

  36. Z. Niu, Comparison radius and mean topological dimension:d-actions, arXiv:1906.09171 [math.OA].

  37. Z. Niu, Z-stability of C(X) ⋊ Γ, Trans. Amer. Math. Soc. 374 (2021), 7525–7551.

    MathSciNet  MATH  Google Scholar 

  38. N. C. Phillips, Recursive subhomogeneous algebras, Trans. Amer. Math. Soc. 359 (2007), 4595–4623.

    Article  MathSciNet  MATH  Google Scholar 

  39. N. C. Phillips, The C*-algebra of a minimal homeomorphism with finite mean dimension has finite radius of comparison, arXiv:1605.07976 [math.OA].

  40. J. Renault, A Groupoid Approach to C*-Algebras, Springer, Berlin, 1980.

    Book  MATH  Google Scholar 

  41. M. Rørdam, On the structure of simple C*-algebras tensored with a UHF-algebra. II, J. Funct. Anal. 107 (1992), 255–269.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Szabó, The Rokhlin dimension of topologicalm-actions, Proc. Lond. Math. Soc. (3) 110 (2015), 673–694.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. S. Toms, Flat dimension growth for C*-algebras, J. Funct. Anal. 238 (2006), 678–708.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. S. Toms, Comparison theory and smooth minimal C*-dynamics, Comm. Math. Phys. 289 (2009), 401–433.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. S. Toms, K-theoretic rigidity and slow dimension growth, Invent. Math. 183 (2011), 225–244.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. S. Toms and W. Winter, Minimal dynamics and K-theoretic rigidity: Elliott’s conjecture, Geom. Funct. Anal. 23 (2013), 467–481.

    Article  MathSciNet  MATH  Google Scholar 

  47. D. P. Williams, Crossed Products of C*-Algebras, American Mathematical Society, Providence, RI, 2007.

    Book  MATH  Google Scholar 

  48. G. Zeller-Meier, Produits croises d’une C*-algèbre par un groupe d’automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101–239.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuang Niu.

Additional information

The research is partially supported by a Simons Collaboration Grant (Grant #317222) and partially supported by an NSF grant (DMS-1800882).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z. Comparison radius and mean topological dimension: Rokhlin property, comparison of open sets, and subhomogeneous C*-algebras. JAMA 146, 595–672 (2022). https://doi.org/10.1007/s11854-022-0205-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0205-8

Navigation