Skip to main content
Log in

Coorbit spaces associated to integrably admissible dilation groups

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This paper considers coorbit spaces parametrized by mixed, weighted Lebesgue spaces with respect to the quasi-regular representation of the semi-direct product of Euclidean space and a suitable matrix dilation group. The class of dilation groups that we allow, the so-called integrably admissible dilation groups, contains the matrix groups yielding an irreducible, square-integrable quasi-regular representation as a proper subclass. The obtained scale of coorbit spaces extends therefore the well-studied wavelet coorbit spaces associated to discrete series representations. We show that for any integrably admissible dilation group there exists a convienent space of smooth, admissible analyzing vectors that can be used to define a consistent coorbit space possessing all the essential properties that are known to hold in the setting of discrete series representations. In particular, the obtained coorbit spaces can be realized as Besov-type decomposition spaces by means of a Littlewood—Paley-type characterization. The classes of anisotropic Besov spaces associated to expansive matrices are shown to coincide precisely with the coorbit spaces induced by the integrably admissible one-parameter groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Barrios and J. J. Betancor, Characterizations of anisotropic Besov spaces, Math. Nachr. 284 (2011), 1796–1819.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Bernier and K. F. Taylor, Wavelets from square-integrable representations, SIAM J. Math. Anal. 27 (1996), 594–608.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003).

  4. M. Bownik, Atomic and molecular decompositions of anisotropic Besov spaces, Math. Z. 250 (2005), 539–571.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bruna, J. Cufí, H. Führ and M. Miró, Characterizing abelian admissible groups, J. Geom. Anal. 25 (2015), 1045–1074.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Cheshmavar and H. Führ, A classification of anisotropic Besov spaces, Appl. Comput. Harmon. Anal. 49 (2020), 863–896.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. G. Christensen, Sampling in reproducing kernel Banach spaces on Lie groups, J. Approx. Theory, 164 (2012), 179–203.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. G. Christensen and G. Ólafsson, Examples of coorbit spaces for dual pairs, Acta Appl. Math. 107 (2009), 25–48.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. G. Christensen and G. Ólafsson, Coorbit spaces for dual pairs, Appl. Comput. Harmon. Anal. 31 (2011), 303–324.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Currey, H. Führ and V. Oussa, A classification of continuous wavelet transforms in dimension three, Appl. Comput. Harmon. Anal. 46 (2019), 500–543.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Currey, H. Führ and K. Taylor, Integrable wavelet transforms with abelian dilation groups, J. Lie Theory 26 (2016), 567–596.

    MathSciNet  MATH  Google Scholar 

  12. B. N. Currey, Admissibility for a class of quasiregular representations, Canad. J. Math. 59 (2007), 917–942.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Duflo and C. C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal. 21 (1976), 209–243.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Feichtinger, Banach convolution algebras of Wiener type, in Functions, Series, Operators, Vol. I, II (Budapest, 1980), North-Holland, Amsterdam, 1983, pp. 509–524.

    Google Scholar 

  15. H. G. Feichtinger, Banach spaces of distributions defined by decomposition methods. II, Math. Nachr. 132 (1987), 207–237.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. G. Feichtinger and P. Gröbner, Banach spaces of distributions defined by decomposition methods. I, Math. Nachr. 123 (1985), 97–120.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via integrable group representations, in Function Spaces and Applications (Lund, 1986), Springer, Berlin, 1988, pp. 52–73.

    Chapter  Google Scholar 

  18. H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal. 86 (1989), 307–340.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. II, Monatsh. Math. 108 (1989), 129–148.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. J. F. Fournier and J. Stewart, Amalgams of Lpand lq, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 1–21.

    Article  MathSciNet  Google Scholar 

  21. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777–799.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34–170.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Führ, Continuous wavelet transforms with abelian dilation groups, J. Math. Phys. 39 (1998), 3974–3986.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Führ, Abstract Harmonic Analysis of Continuous Wavelet Transforms, Springer, Berlin, 2005.

    Book  MATH  Google Scholar 

  25. H. Führ, Generalized Calderón conditions and regular orbit spaces, Colloq. Math. 120 (2010), 103–126.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Führ, Coorbit spaces and wavelet coefficient decay over general dilation groups, Trans. Amer. Math. Soc. 367 (2015), 7373–7401.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Führ, Vanishing moment conditions for wavelet atoms in higher dimensions, Adv. Comput. Math. 42 (2016), 127–153.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Führ and M. Mayer, Continuous wavelet transforms from semidirect products: cyclic representations and Plancherel measure, J. Fourier Anal. Appl. 8 (2002), 375–397.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Führ and R. R. Tousi, Simplified vanishing moment criteria for wavelets over general dilation groups, with applications to abelian and shearlet dilation groups, Appl. Comput. Harmon. Anal. 43 (2017), 449–481.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Führ and F. Voigtlaender, Wavelet coorbit spaces viewed as decomposition spaces, J. Funct. Anal. 269 (20150), 80–154.

  31. K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1{42}

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Gröchenig, E. Kaniuth and K. F. Taylor, Compact open sets in duals and projections in L1-algebras of certain semi-direct product groups, Math. Proc. Cambridge Philos. Soc. 111 (1992), 545–556.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representations. I, General results, J. Math. Phys. 26 (1985), 2473–2479.

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Holland, Harmonic analysis on amalgams of Lpand ℓq, J. London Math. Soc. (2) 10 (1975), 295–305.

    Article  MathSciNet  Google Scholar 

  35. E. Kaniuth and K. F. Taylor, Minimal projections in L1-algebras and open points in the dual spaces of semi-direct product groups, J. London Math. Soc. (2) 53 (1996), 141–157, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Kaniuth and K. F. Taylor, Induced Representations of Locally Compact Groups, Cambridge University Press, Cambridge, 2013.

    MATH  Google Scholar 

  37. R. Koch, Analysis of Shearlet Coorbit Spaces, PhD thesis, RWTH Aachen University, 2015.

  38. D. Larson, E. Schulz, D. Speegle and K. F. Taylor, Explicit cross-sections of singly generated group actions, in Harmonic Analysis and Applications, Birkhäuser, Boston, MA, 2006, pp. 209–203.

    Chapter  Google Scholar 

  39. R. S. Laugesen, N. Weaver, G. L. Weiss and E. N. Wilson, A characterization of the higher dimensional groups associated with continuous wavelets, J. Geom. Anal. 12 (2002), 89–102.

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Liu and L. Peng, Admissible wavelets associated with the Heisenberg group, Pacific J. Math. 180 (1997), 101–123.

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Oussa, Admissibility for quasiregular representations of exponential solvable Lie groups, Colloq. Math. 131 (2013), 241–264.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Peetre, New Thoughts on Besov Spaces, Duke University, Durham, NC, 1976.

    MATH  Google Scholar 

  44. J. Roe, Lectures on Coarse Geometry, American Mathematical Society, Providence, RI, 2003.

    Book  MATH  Google Scholar 

  45. J. L. Romero, J. T. Van Velthoven and F. Voigtlaender, Invertibility of frame operators on Besov-type decomposition spaces, arXiv:1905.04934 [math.FA].

  46. W. Rudin, Functional Analysis, McGraw-Hill, New York—Düsseldorf—Johannesburg, 1973.

    MATH  Google Scholar 

  47. E. Schulz and K. F. Taylor, Projections in L1-algebras and tight frames, in Banach Algebras and their Applications, American Mathematical Society, Providence, RI, 2004. pp. 313–319.

    Chapter  MATH  Google Scholar 

  48. B. Stöckert and H. Triebel, Decomposition methods for function spaces of B sp, q type and F sp, q type, Math. Nachr. 89 (1979), 247–267.

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Triebel, Fourier Analysis and Function Spaces (selected topics), Teubner, Leipzig, 1977.

    MATH  Google Scholar 

  50. H. Triebel, General function spaces. I. Decomposition methods, Math. Nachr. 79 (1977), 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  51. H. Triebel, Spaces of Besov—Hardy—Sobolev Type, Teubner, Leipzig, 1978.

    MATH  Google Scholar 

  52. F. Voigtlaender, Embeddings of decomposition spaces into Sobolev and BV spaces, ArXiv:1601.02201 [math.FA].

  53. F. Voigtlaender, Embeddings of decomposition spaces, Mem. Amer. Math. Soc., to appear.

  54. K. Yosida, Functional Analysis, Springer, Berlin, 1995.

    Book  MATH  Google Scholar 

Download references

Acknowledgement

The authors thank the referee for his/her careful reading and the thoughtful comments. The second named author acknowledges support from the Austrian Science Fund (FWF): P 29462 — N35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordy Timo van Velthoven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Führ, H., van Velthoven, J.T. Coorbit spaces associated to integrably admissible dilation groups. JAMA 144, 351–395 (2021). https://doi.org/10.1007/s11854-021-0192-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0192-1

Navigation