Skip to main content
Log in

Obstructions for automorphic quasiregular maps and Lattès-type uniformly quasiregular maps

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Suppose that M is a closed, connected, and oriented Riemannian n-manifold, f: ℝnM is a quasiregular map automorphic under a discrete group Γ of Euclidean isometries, and f has finite multiplicity in a fundamental cell of Γ. We show that if Γ has a sufficiently large translation subgroup ΓT, then dim Γ ∈ {0, n − 1, n}. If f is strongly automorphic and induces a non-injective Lattès-type uniformly quasiregular map, then the same assertion holds without the assumption on the size of ΓT. Moreover, an even stronger restriction holds in the Lattès case if M is not a rational cohomology sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Astola, R. Kangaslampi and K. Peltonen, Lattès-type mappings on compact manifolds, Conform. Geom. Dyn. 14 (2010), 337–367.

    Article  MathSciNet  Google Scholar 

  2. A. Fletcher and D. Macclure, Strongly automorphic mappings and Julia sets of uniformly quasiregular mappings, J. Anal. Math. 141 (2020), 483–520.

    Article  MathSciNet  Google Scholar 

  3. I. Holopainen and S. Rickman, A picard type theorem for quasiregular mappings of ℝninto n-manifolds with many ends, Rev. Mat. Iberoam. 8 (1992), 131–148.

    Article  Google Scholar 

  4. T. Iwaniec and G. Martin, Geometric Function Theory and Non-Linear Analysis, The Clarendon Press, Oxford; University Press, New York, 2001.

    MATH  Google Scholar 

  5. R. Kangaslampi, Uniformly quasiregular mappings on elliptic Riemannian manifolds, Ann. Acad. Sci. Fenn. Math. Diss. 151 (2008).

  6. I. Kangasniemi, Sharp cohomological bound for uniformly quasiregularly elliptic manifolds, Amer. J. Math. 143 (2021), 1079–1113.

    Article  MathSciNet  Google Scholar 

  7. G. Martin, V. Mayer and K. Peltonen, The generalized Lichnerowicz problem: uniformly quasiregular mappings and space forms, Proc. Amer. Math. Soc. 134 (2006), 2091–2097.

    Article  MathSciNet  Google Scholar 

  8. G. J. Martin and V. Mayer, Rigidity in holomorphic and quasiregular dynamics, Trans. Amer. Math. Soc. 355 (2003), 4349–4363.

    Article  MathSciNet  Google Scholar 

  9. O. Martio, On k-periodic quasiregular mappings inn, Ann. Acad. Sci. Fenn. Ser. AI Math. 1 (1975), 207–220.

    Article  MathSciNet  Google Scholar 

  10. O. Martio and U. Srebro, Automorphic quasimeromorphic mappings inn, Acta Math. 135 (1975), 221–247.

    Article  MathSciNet  Google Scholar 

  11. O. Martio and U. Srebro, Periodic quasimeromorphic mappings inn, J. Anal. Math. 28 (1975), 20–40.

    Article  Google Scholar 

  12. O. Martio and U. Srebro, Locally injective automorphic mappings inn, Math. Scand. 85 (1999), 49–70.

    Article  MathSciNet  Google Scholar 

  13. V. Mayer, Uniformly quasiregular mappings of Lattès type, Conform. Geom. Dyn. 1 (1997), 104–111.

    Article  MathSciNet  Google Scholar 

  14. V. Mayer, Quasiregular analogues of critically finite rational functions with parabolic orbifold, J. Anal. Math. 75 (1998), 105–119.

    Article  MathSciNet  Google Scholar 

  15. Y. Okuyama and P. Pankka, Accumulation of periodic points for local uniformly quasiregular mappings, in Potential Theory and Its Related Fields, RIMS, Kyoto, 2013, pp. 121–140.

    Google Scholar 

  16. Y. Okuyama and P. Pankka, Equilibrium measures for uniformly quasiregular dynamics, J. Lond. Math. Soc. (2) 89 (2014), 524–538.

    Article  MathSciNet  Google Scholar 

  17. S. Rickman, A path lifting construction for discrete open mappings with application to quasimeromorphic mappings, Duke Math. J. 42 (1975), 797–809.

    Article  MathSciNet  Google Scholar 

  18. S. Rickman, Quasiregular Mmappings, Springer, Berlin, 1993.

    Book  Google Scholar 

  19. A. Szczepanski, Geometry of Crystallographic Groups, World scientific, Hackensack, NJ, 2012.

    Book  Google Scholar 

  20. J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York—London—Sydney, 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmari Kangasniemi.

Additional information

This work was supported by the doctoral program DOMAST of the University of Helsinki and the Academy of Finland project #297258.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangasniemi, I. Obstructions for automorphic quasiregular maps and Lattès-type uniformly quasiregular maps. JAMA 146, 401–439 (2022). https://doi.org/10.1007/s11854-021-0187-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0187-y

Navigation