Skip to main content
Log in

Random non-hyperbolic exponential maps

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider random iteration of exponential entire functions, i.e., of the form ℂ ∍ zfλ(z) ≔ λez ∈ ℂ, λ ∈ ℂ {0}. Assuming that λ is in a bounded closed interval [A, B] ⊂ ℝ with A > 1/e, we deal with random iteration of the maps fλ governed by an invertible measurable map θ: Ω → Ω preserving a probability ergodic measure m on Ω, where Ω is a measurable space. The link from Ω to exponential maps is then given by an arbitrary measurable function η: Ω ↦ [A, B]. We in fact work on the cylinder space Q ≔ ℂ/ ∼, where ∼ is the natural equivalence relation: zw if and only if w−z is an integral multiple of 2πi. We prove that then for every t > 1 there exists a unique random conformal measure v(t) for the random conformal dynamical system on Q. We further prove that this measure is supported on the, appropriately defined, radial Julia set. Next, we show that there exists a unique random probability invariant measure μ(t) absolutely continuous with respect to v(t). In fact μ(t) is equivalent with v(t). Then we turn to geometry. We define an expected topological pressure \({\cal E}{\rm{P}}(t) \in \mathbb{R}\) and show that its only zero h coincides with the Hausdorff dimension of m-almost every fiber radial Julia set Jr (ω) ⊂ Q, ω ∈ Ω. We show that h ∈ (1, 2) and that the omega-limit set of Lebesgue almost every point in Q is contained in the real line ℝ. Finally, we entirely transfer our results to the original random dynamical system on ℂ. As our preliminary result, we show that all fiber Julia sets coincide with the entire complex plane ℂ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arnold, Random dynamical systems, Springer, Berlin, 1998.

    Book  Google Scholar 

  2. I. N. Baker, Limit Functions and Sets of Non-Normality in Iteration Theory, Suomalainen Tiedeakatemia, Helsinki, 1970.

    MATH  Google Scholar 

  3. I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 277–283.

    Article  MathSciNet  Google Scholar 

  4. I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), 563–576.

    Article  MathSciNet  Google Scholar 

  5. K. Barański, Hausdorff dimension and measures on Julia sets of some meromorphic maps, Fund. Math. 147 (1995), 239–260.

    MathSciNet  MATH  Google Scholar 

  6. K. Barański, N. Fagella, X. Jarque and B. Karpińska, Absorbing sets and Baker domains for holomorphic maps, J. Lond. Math. Soc. (2) 92 (2015), 144–162.

    Article  MathSciNet  Google Scholar 

  7. K. Barański, B. Karpińska and A. Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, Int. Math. Res. Not. IMRN 2009 (2009), 615–624.

    MathSciNet  MATH  Google Scholar 

  8. K. Barański, B. Karpińska and A. Zdunik, Bowen’s formula for meromorphic functions, Ergodic Theory Dynam. Systems 32 (2012), 1165–1189.

    Article  MathSciNet  Google Scholar 

  9. W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), 151–188.

    Article  MathSciNet  Google Scholar 

  10. J. Conway, Functions of One Complex Variable, Springer, New York, 1978.

    Book  Google Scholar 

  11. H. Crauel, Random Probability Measures on Polish Spaces, Taylor & Francis, London, 2002.

    Book  Google Scholar 

  12. R. L. Devaney and M. Krych, Dynamics of exp(z), Ergodic Theory Dynam. Systems 4 (1984), 35–52.

    Article  MathSciNet  Google Scholar 

  13. A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989–1020.

    Article  MathSciNet  Google Scholar 

  14. P. Fatou, Sur l’iteration des fonctions transcendentales entières, Acta Math. 47 (1926), 337–370.

    Article  MathSciNet  Google Scholar 

  15. E. Hille, Analytic Function Theory. Vol. 1, Ginn and Company, Boston, MA, 1959.

    MATH  Google Scholar 

  16. Y. Kifer, Ergodic Theory of Random Transformations, Birkhäuser Boston, Boston, MA, 1986.

    Book  Google Scholar 

  17. Y. Kifer, Random Perturbations of Dynamical Systems, Birkhäuser Boston, Boston, MA, 1988.

    Book  Google Scholar 

  18. Y. Kifer and P.-D. Liu, Random dynamics, in Handbook of Dynamical Systems. Vol. 1B, Elsevier, Amsterdam, 2006, pp. 379–499.

    Chapter  Google Scholar 

  19. J. Kotus and M. Urbański, Geometry and ergodic theory of non-recurrent elliptic functions, J. Anal. Math. 93 (2004), 35–102.

    Article  MathSciNet  Google Scholar 

  20. M. Yu. Lyubich, The measurable dynamics of the exponential, Sibirsk. Mat. Zh. 28 (1987), 111–127.

    Article  MathSciNet  Google Scholar 

  21. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  22. V. Mayer, B. Skorulski and M. Urbański, Regularity and irregularity of fiber dimensions of non-autonomous dynamical systems, Ann. Acad. Sci. Fenn. Math. 38 (2013), 489–514.

    Article  MathSciNet  Google Scholar 

  23. V. Mayer and M. Urbański, Geometric thermodynamic formalism and real analyticity for meromorphic functions of finite order, Ergodic Theory Dynam. Systems 28 (2008), 915–946.

    Article  MathSciNet  Google Scholar 

  24. V. Mayer and M. Urbański, Thermodynamical Formalism and Multifractal Analysis for Meromorphic Functions of Finite Order, Mem. Amer. Math. Soc. 203 (2010).

  25. V. Mayer and M. Urbański, Countable alphabet random subhifts of finite type with weakly positive transfer operator, J. Stat. Phys. 160 (2015), 1405–1431.

    Article  MathSciNet  Google Scholar 

  26. V. Mayer and M. Urbański, Thermodynamic formalism and integral means spectrum of asymptotic tracts for transcendental entire functions, Trans. Amer. Math. Soc. 37 (2020), 7669–7711.

    Article  Google Scholar 

  27. V. Mayer and M. Urbański, Random dynamics of transcendental functions, J. Anal. Math. 134 (2018), 201–235.

    Article  MathSciNet  Google Scholar 

  28. C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), 329–342.

    Article  MathSciNet  Google Scholar 

  29. M. Misiurewicz, On iterates of ez, Ergodic Theory Dynam. Systems 1 (1981), 103–106.

    Article  MathSciNet  Google Scholar 

  30. F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, Cambridge University Press, Cambridge, 2010.

    Book  Google Scholar 

  31. M. Rees, The exponential map is not recurrent, Math. Z. 191 (1986), 593–598.

    Article  MathSciNet  Google Scholar 

  32. L. Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions, Proc. Amer. Math. Soc. 137 (2009), 1411–1420.

    Article  MathSciNet  Google Scholar 

  33. L. Rempe-Gillen, Hyperbolic entire functions with full hyperbolic dimension and approximation by Eremenko-Lyubich functions, Proc. Lond. Math. Soc. (3) 108 (2014), 1193–1225.

    Article  MathSciNet  Google Scholar 

  34. G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions, Ergodic Theory Dynam. Systems 11 (1991), 769–777.

    Article  MathSciNet  Google Scholar 

  35. G. M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions, J. London Math. Soc. (2) 49 (1994), 281–295.

    Article  MathSciNet  Google Scholar 

  36. G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions. II, Math. Proc. Cambridge Philos. Soc. 119 (1996), 513–536.

    Article  MathSciNet  Google Scholar 

  37. G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions. III, Math. Proc. Cambridge Philos. Soc. 122 (1997), 223–244.

    Article  MathSciNet  Google Scholar 

  38. G. M. Stallard, The Hausdorff dimension of Julia sets of hyperbolic meromorphic functions, Math. Proc. Cambridge Philos. Soc. 127 (1999), 271–288.

    Article  MathSciNet  Google Scholar 

  39. M. Urbański and A. Zdunik, The finer geometry and dynamics of the hyperbolic exponential family, Michigan Math. J. 51 (2003), 227–250.

    Article  MathSciNet  Google Scholar 

  40. M. Urbański and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family, Ergodic Theory Dynam. Systems 24 (2004), 279–315.

    Article  MathSciNet  Google Scholar 

  41. M. Urbański and A. Zdunik, Geometry and ergodic theory of non-hyperbolic exponential maps, Trans. Amer. Math. Soc. 359 (2007), 3973–3997.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Urbański.

Additional information

We wish to thank the anonymous referee whose remarks, comments, and suggestions allowed us to improve the final exposition of the paper.

M. Urbański was supported in part by the NSF Grant DMS 1361677.

A. Zdunik was supported in part by the Grant NCN grant 2014/13/B/ST1/04551.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbański, M., Zdunik, A. Random non-hyperbolic exponential maps. JAMA 143, 1–93 (2021). https://doi.org/10.1007/s11854-021-0157-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0157-4

Navigation