Skip to main content
Log in

Critical points and level sets of Grushin-Harmonic functions in the plane

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This paper concerns the critical points and the level sets of solutions of the Grushin equation in the plane. After exactly establishing descriptions about the critical points of the homogeneous Gruhin-harmonic polynomials and investigating the local geometric properties of the level sets near these critical points, we prove that the critical points of solutions of the Grushin equation are isolated and each critical point has finite multiplicity. We further estimate the numbers of interior critical points of solutions of the Dirichlet boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm.Super. Pisa C1. Sci. (4) 14 (1987), 229–256.

    MathSciNet  MATH  Google Scholar 

  2. G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Super. Pisa C1. Sci. (4) 19 (1992), 567–589.

    MathSciNet  MATH  Google Scholar 

  3. G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal. 25 (1994), 1259–1268.

    Article  MathSciNet  Google Scholar 

  4. G. Alessandrini, D. Lupo and E. Rosset, Local behavior and geometric properties of solutions to degenerate quasilinear elliptic equations in the plane, Appl. Anal. 50 (1993), 191–215.

    Article  MathSciNet  Google Scholar 

  5. L. D’Ambrosioa and S. Lucenteb, Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations 193 (2003), 511–541.

    Article  MathSciNet  Google Scholar 

  6. W. Bauer, K. Furutani and C. Iwasaki, Fundamental solution of a higher step Grushin type operator, Adv. Math. 271 (2015), 188–234.

    Article  MathSciNet  Google Scholar 

  7. A. Bellaïche, The tangent space in sub-Riemannian geometry, in Sub-Riemannian Geometry, Birkhaauser, Basel, 1996, pp. 1–78.

    MATH  Google Scholar 

  8. T. Bieske, Viscosity solutions on Grushin-type planes, Illinois J. Math. 46 (2002), 893–911.

    Article  MathSciNet  Google Scholar 

  9. J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du probleme de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277–304.

    Article  MathSciNet  Google Scholar 

  10. S. Cecchini and R. Magnanini, Critical points of solutions of degenerate elliptic equations in the plane, Calc. Var. Partial Differential Equations 39 (2010), 121–138.

    Article  MathSciNet  Google Scholar 

  11. J. Cheeger, A. Naber and D. Valtorta, Critical sets of elliptic equations, Comm. Pure Appl. Math. 68 (2015), 173–209.

    Article  MathSciNet  Google Scholar 

  12. S. Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), 43–55.

    Article  MathSciNet  Google Scholar 

  13. H. Y. Deng, H. R. Liu and L. Tian, Critical points of solutions to a quasilinear elliptic equation with nonhomogeneous Dirichlet boundary conditions, J. Differential Equations 265 (2018), 4133–4157.

    Article  MathSciNet  Google Scholar 

  14. B. Franchi and E. Lanconelli, Holder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Super. Pisa C1. Sci. (4) 10 (1983), 523–541.

    MATH  Google Scholar 

  15. V. V. Grushin, On a class of hypoelliptic operators, Math. USSR Sbornik 12 (1970), 458–476.

    Article  Google Scholar 

  16. V. V. Grushin, On a class of hypoelliptic pseudodifferential operators degenerate on submanifold, Math. USSR Sbornik 13 (1971), 155–186.

    Article  Google Scholar 

  17. Q. Han, Singular sets of solutions to elliptic equations, Indiana Univ. Math. J. 43 (1994), 983–1002.

    Article  MathSciNet  Google Scholar 

  18. Q. Han and F. H. Lin, Rank zero and rank one sets of harmonic maps, Methods Appl. Anal. 7 (2000), 417–442.

    MathSciNet  MATH  Google Scholar 

  19. R. Hardt, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and N. Nadirashvili, Critical sets of solutions to elliptic equations, J. Differential Geom. 51 (1999), 359–373.

    Article  MathSciNet  Google Scholar 

  20. P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations (I), Amer. J. Math. 75 (1953), 449–476.

    Article  MathSciNet  Google Scholar 

  21. F. H. Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure App. Math. 44 (1991), 287–308.

    Article  MathSciNet  Google Scholar 

  22. H. R. Liu, The homogeneous polynomial solutions for the Grushin operator, Acta Math. Sci. 38 (2018), 237–247.

    Article  MathSciNet  Google Scholar 

  23. R. Magnanini, An introduction to the study of critical points of solutions of elliptic and parabolic equations, Rend. Istit. Mat. Univ. Trieste 48 (2016), 121–166.

    MathSciNet  MATH  Google Scholar 

  24. J. J. Manfredi, p-harmonic functions in the plane, Proc. Amer. Math. Soc. 103 (1988), 473–479.

    MathSciNet  MATH  Google Scholar 

  25. T. Matsuzawa, Gevrey hypoellipticity for Grushin operators, Publ. Res. Inst. Math. Sci. 33 (1997), 775–799.

    Article  MathSciNet  Google Scholar 

  26. R. Monti, D. Morbidelli, Kelvin transform for Grushin operators and critical semilinear equations, Duke Math. J. 131 (2006), 167–202.

    Article  MathSciNet  Google Scholar 

  27. A. Naber and D. Valtorta, Volume estimates on the critical sets ofsolutions to elliptic PDEs, Comm. Pure Appl. Math. 70 (2017), 1835–1897.

    Article  MathSciNet  Google Scholar 

  28. A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vectorfields I: Basic properties, Acta Math. 155 (1985), 103–147.

    Article  MathSciNet  Google Scholar 

  29. G. Szego, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1939.

    MATH  Google Scholar 

  30. L. Tian and X. P. Yang, Nodal sets and horizontal singular sets of H-harmonic functions on the Heisenberg group, Commun. Contemp. Math. 16 (2014), no. 4, 1350049.

    Article  MathSciNet  Google Scholar 

  31. P. H. Wang and D. K. Zhang, Convexity of level sets of minimal graph on space form with nonnegative curvature, J. Differential Equations 262 (2017), 5534–5564.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was done while the first author was visiting at The Institute of Mathematical Sciences of The Chinese University of Hong Kong. She would like to thank the institution and is very grateful to Professor Zhouping Xin for his invitation. The research of the first author was supported by the National Natural Science Foundation of China (No. 12071219, No. 12026432).

The research of the second author was supported by the National Natural Science Foundation of China (No. 11971229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, X. Critical points and level sets of Grushin-Harmonic functions in the plane. JAMA 143, 435–460 (2021). https://doi.org/10.1007/s11854-021-0151-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0151-x

Navigation