Skip to main content
Log in

Strongly automorphic mappings and Julia sets of uniformly quasiregular mappings

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

A theorem of Ritt states the Poincaré linearizer L of a rational map f at a repelling fixed point is periodic only if f is conjugate to a power of z, a Chebyshev polynomial or a Lattes map. The converse, except for the case where the fixed pointis an endpoint of the interval Julia set for a Chebyshev polynomial, is also true. In this paper, we prove the analogous statement in the setting of strongly automorphic quasiregular mappings and uniformly quasiregular mappings in ℝn. Along the way, we characterize the possible automorphy groups that can arise via crystallographic orbifolds and a use of the Poincaré conjecture. We further give a classification of the behaviour of uniformly quasiregular mappings on their Julia set when the Julia set is a quasisphere, quasidisk or all of ℝn and the Julia set coincides with the set of conical points. Finally, we prove an analogue of the Denjoy-Wolff Theorem for uniformly quasiregular mappings in \({\mathbb{B}^3}\), the first such generalization of the Denjoy—Wolff Theorem where there is no guarantee of non-expansiveness with respect to a metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bergweiler, Karpińska’s paradox in dimension 3, Duke Math. J. 154 (2010), 599–630.

    Article  MathSciNet  Google Scholar 

  2. W. Bergweiler, Iteration of quasiregular mappings, Comput. Methods Funct. Theory 10 (2010), 455–481.

    Article  MathSciNet  Google Scholar 

  3. W. Bergweiler, Fatou—Julia theory for non-uniformly quasiregular maps, Ergodic Theory Dynam. Systems 33 (2013), 1–23.

    Article  MathSciNet  Google Scholar 

  4. W. Bergweiler and A. Eremenko, Meromorphic functions with linearly distributed values and Julia sets of rational functions, Proc. Amer. Math. Soc. 137 (2009), 2329–2333.

    Article  MathSciNet  Google Scholar 

  5. W. Bergweiler and A. Eremenko, Dynamics of a higher dimensional analog of the trigonometric functions, Ann. Acad. Sci. Fenn. Math. 36 (2011), 165–175.

    Article  MathSciNet  Google Scholar 

  6. M. G. Brin and T. L. Thickstun, 3-Manifolds Which are End 1-Movable, American Mathematical Society, Providence, RI, 1989.

    Book  Google Scholar 

  7. J. F. Davis and P. Kirk, Lecture Notes in Algebraic Topology, American Mathematical Society, Providence, RI, 2001.

    Book  Google Scholar 

  8. D. Drasin, On a method of Holopainen and Rickman, Israel J. Math. 101 (1997), 73–84.

    Article  MathSciNet  Google Scholar 

  9. W. D. Dunbar, Geometric orfafolds, Rev. MatComplut. 1 (1988), 67–99.

    Google Scholar 

  10. A. Eremenko and S. van Strien, Rational maps with real multipliers, Trans. Amer. Math. Soc. 363 (2010), 6453–6463.

    Article  MathSciNet  Google Scholar 

  11. P. Fatou, Sur les equations fonctionnelles. Troisieme memoire, Bull. Soc. Math. France 48 (1920), 208–314.

    Article  MathSciNet  Google Scholar 

  12. A. Fletcher, Poincaré linearizers in higher dimensions, Proc. Amer. Math. Soc. 143 (2015), 2543–2557.

    Article  MathSciNet  Google Scholar 

  13. A. Fletcher and D. MacClure, On quasiregular linearizers, Comput. Methods Funct. Theory 15 (2015), 263–276.

    Article  MathSciNet  Google Scholar 

  14. M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357–453.

    Article  MathSciNet  Google Scholar 

  15. A. Hinkkanen, Uniformly quasiregular semigroups in two dimensions, Ann. Acad. Sci. Fenn. Math. 21 (1996), 205–222.

    MathSciNet  MATH  Google Scholar 

  16. A. Hinkkanen and G. Martin, Attractors in quasiregular semigroups, in XVIth Rolf Nevanlinna Colloquium (Joensuu, 1995), de Gruyter, Berlin, 1996, pp. 135–141.

    Google Scholar 

  17. A. Hinkkanen, G. Martin and V. Mayer, Local dynamics of uniformly quasiregular mappings, Math. Scand. 95 (2004) 80–100.

    Article  MathSciNet  Google Scholar 

  18. T. Iwaniec and G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford University Press, Oxford, 2001.

    MATH  Google Scholar 

  19. C. Lange, Characterization of finite groups generated by reflections and rotations, J. Topol. 9 (2016), 1109–1129.

    Article  MathSciNet  Google Scholar 

  20. B. Lemmens, B. Lins, R Nussbaum and M. Wortel, Denjoy-Wolff theorems for Hilbert’s and Thompson’s metric spaces, J. Anal. Math. 134 (2018), 671–718.

    Article  MathSciNet  Google Scholar 

  21. G. J. Martin, Analytic continuation for Beltrami systems, Siegel’s theorem for UQR maps, and the Hilbert-Smith conjecture, Math. Ann. 324 (2002), 329–340.

    Article  MathSciNet  Google Scholar 

  22. G. J. Martin, Extending rational maps, Conf. Geom. Dyn. 8 (2004), 158–166.

    Article  MathSciNet  Google Scholar 

  23. G. J. Martin and V. Mayer, Rigidity in holomorphic and quasiregular dynamics, Trans. Amer. Math. Soc. 355 (2003), 4349–4363.

    Article  MathSciNet  Google Scholar 

  24. O. Martio, On k-periodic quasiregular mappings inn, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 1 (1975), 207–220.

    Article  MathSciNet  Google Scholar 

  25. O. Martio and U. Srebro, Periodic quasimeromorphic mappings inn, J. Anal. Math. 28 (1975), 20–40.

    Article  Google Scholar 

  26. V. Mayer, Uniformly quasiregular mappings of Lattes type, Conform. Geom. Dyn. 1 (1997), 104–111.

    Article  MathSciNet  Google Scholar 

  27. V. Mayer, Quasiregular analogues of critically finite rational functions with parabolic orbifold, J. Anal. Math. 75 (1998), 105–119.

    Article  MathSciNet  Google Scholar 

  28. J. Milnor, Dynamics in One Complex Variable, Princeton University Press, Princeton, NJ, 2006.

    MATH  Google Scholar 

  29. R. Miniowitz, Normal families ofquasimeromorphic mappings, Proc. Amer.Math. Soc. 84 (1982), 35–43.

    Article  MathSciNet  Google Scholar 

  30. S. Rickman, Quasiregular Mappings, Springer, Berlin-Heidelberg, 1993.

    Book  Google Scholar 

  31. J. Ritt, Periodic functions with a multiplication theorem, Trans. Amer. Math. Soc. 23 (1922), 16–25.

    Article  MathSciNet  Google Scholar 

  32. J. Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481–488.

    Article  MathSciNet  Google Scholar 

  33. N. Steinmetz, Zalcman functions and rational dynamics, New Zealand J. Math 32 (2003), 1–14.

    MathSciNet  MATH  Google Scholar 

  34. D. Sullivan, The ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Riemann Surfaces and Related Topics, Princeton University Press, Princeton, NJ, 1981, pp. 465–496.

    Chapter  Google Scholar 

  35. A. Szczepanski, Geometry of Crystallographic Groups, World Scientific, Hackensack, NJ, 2012.

    Book  Google Scholar 

  36. P. Tukia, On two dimensional quasicon ormal groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 73–78.

    Article  MathSciNet  Google Scholar 

  37. P. Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. AI Math. 6 (1981), 149–160.

    Article  MathSciNet  Google Scholar 

  38. P. Tukia and J. Väisäla, Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1982), 303–342.

    Article  MathSciNet  Google Scholar 

  39. M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Springer-Verlag, Heidelberg, 1988.

    Book  Google Scholar 

  40. V. A. Zorich, A theorem of M. A. Lavrent’ev on quasiconformal space maps, Math. USSR, Sb. 3 (1967), 389–403; translation from Mat. Sb. (N.S.) 74 (116), (1967), 417–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair Fletcher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, A., Macclure, D. Strongly automorphic mappings and Julia sets of uniformly quasiregular mappings. JAMA 141, 483–520 (2020). https://doi.org/10.1007/s11854-020-0107-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0107-6

Navigation