Skip to main content
Log in

Superminimizers and a weak Cartan property for p = 1 in metric spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study functions of least gradient as well as related superminimizers and solutions of obstacle problems in complete metric spaces that are equipped with a doubling measure and support a Poincaré inequality. We show a standard weak Harnack inequality and use it to prove semicontinuity properties of such functions. We also study some properties of the fine topology in the case p = 1. Then we combine these theories to prove a weak Cartan property for superminimizers in the case p = 1, as well as a strong version at points of nonzero capacity. Finally, we employ the weak Cartan property to show that any topology that makes the upper representative u of every 1-superminimizer u upper semicontinuous in open sets is stronger (in some cases, strictly) than the 1-fine topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, The Clarendon Press, Oxford University Press, New York, 2000.

    MATH  Google Scholar 

  2. A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, European Mathematical Society (EMS), Zürich, 2011.

    MATH  Google Scholar 

  3. A. Björn and J. Björn, Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology, Rev. Mat. Iberoam. 31 (2015), 161–214.

    MathSciNet  MATH  Google Scholar 

  4. A. Björn, J. Björn and V. Latvala, The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces, J. Anal. Math, 135 (2018), 59–83.

    MathSciNet  MATH  Google Scholar 

  5. A. Björn, J. Björn and V. Latvala, Sobolev spaces, fine gradients and quasicontinuity on quasiopen sets, Ann. Acad. Sci. Fenn. Math. 41 (2016), 551–560.

    MathSciNet  MATH  Google Scholar 

  6. A. Björn, J. Björn and V. Latvala, The weak Cartan property for the p-fine topology on metric spaces, Indiana Univ. Math. J. 64 (2015), 915–941.

    MathSciNet  MATH  Google Scholar 

  7. A. Björn, J. Björn and N. Shanmugalingam, Quasicontinuity of Newton—Sobolev functions and density of Lipschitz functions on metric spaces, Houston J. Math. 34 (2008), 1197–1211.

    MathSciNet  MATH  Google Scholar 

  8. A. Björn, J. Björn and N. Shanmugalingam, The Dirichlet problem for p-harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173–203.

    MathSciNet  MATH  Google Scholar 

  9. A. Björn, J. Björn and N. Shanmugalingam, The Dirichlet problem for p-harmonic functions with respect to the Mazurkiewicz boundary, and new capacities, J. Differential Equations 259 (2015), 3078–3114.

    MathSciNet  MATH  Google Scholar 

  10. J. Björn, Fine continuity on metric spaces, Manuscripta Math. 125 (2008), 369–381.

    MathSciNet  MATH  Google Scholar 

  11. E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268.

    MathSciNet  MATH  Google Scholar 

  12. M. Carriero, G. Dal Maso, A. Leaci and E. Pascali, Relaxation of the nonparametric plateau problem with an obstacle, J. Math. Pures Appl. (9) 67 (1988), 359–396.

    MathSciNet  MATH  Google Scholar 

  13. E. De Giorgi, F. Colombini and L. C. Piccinini, Frontiere Orientate di Misura Minima e Questioni Collegate, Scuola Normale Superiore, Pisa, 1972.

    MATH  Google Scholar 

  14. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  15. Z. Farnana, Pointwise regularity for solutions of double obstacle problems on metric spaces, Math. Scand. 109 (2011), 185–200.

    MathSciNet  MATH  Google Scholar 

  16. H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.

    MATH  Google Scholar 

  17. E. Giusti, Minimal Surfaces and Functions of Bounded Viriation, Birkhäuser, Basel, 1984.

    MATH  Google Scholar 

  18. H. Hakkarainen and J. Kinnunen, The BV-capacity in metric spaces, Manuscripta Math. 132 (2010), 51–73.

    MathSciNet  MATH  Google Scholar 

  19. H. Hakkarainen, J. Kinnunen and P. Lahti, Regularity of minimizers of the area functional in metric spaces, Adv. Calc. Var. 8 (2015), 55–68.

    MathSciNet  MATH  Google Scholar 

  20. H. Hakkarainen, R. Korte, P. Lahti and N. Shanmugalingam, Stability and continuity of functions of least gradient, Anal. Geom. Metr. Spaces 3 (2015), 123–139.

    MathSciNet  MATH  Google Scholar 

  21. J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001.

    MATH  Google Scholar 

  22. J. Heinonen, T. Kilpelainen and O. Martio, Fine topology and quasilinear elliptic equations, Ann. Inst. Fourier (Grenoble) 39 (1989), 293–318.

    MathSciNet  MATH  Google Scholar 

  23. J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publications, Mineola, NY, 2006.

    MATH  Google Scholar 

  24. J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61.

    MathSciNet  MATH  Google Scholar 

  25. J. Kinnunen, R. Korte, A. Lorent and N. Shanmugalingam, Regularity of sets with quasiminimal boundary surfaces in metric spaces, J. Geom. Anal. 23 (2013), 1607–1640.

    MathSciNet  MATH  Google Scholar 

  26. J. Kinnunen, R. Korte, N. Shanmugalingam and H. Tuominen, Lebesgue points and capacities via the boxing inequality in metric spaces, Indiana Univ. Math. J. 57 (2008), 401–430.

    MathSciNet  MATH  Google Scholar 

  27. J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Pointwise properties of functions of bounded variation in metric spaces, Rev. Mat. Complut. 27 (2014), 41–67.

    MathSciNet  MATH  Google Scholar 

  28. J. Kinnunen, R. Korte, N. Shanmugalingam and H. Tuominen, The De Giorgi measure and an obstacle problem related to minimal surfaces in metric spaces, J. Math. Pures Appl. (9) 93 (2010), 599–622.

    MathSciNet  MATH  Google Scholar 

  29. J. Kinnunen and O. Martio, Nonlinear potential theory on metric spaces, Illinois J. Math. 46 (2002), 857–883.

    MathSciNet  MATH  Google Scholar 

  30. R. Korte, A Caccioppoli estimate and fine continuity for superminimizers on metric spaces, Ann. Acad. Sci. Fenn. Math. 33 (2008), 597–604.

    MathSciNet  MATH  Google Scholar 

  31. R. Korte and P. Lahti, Relative isoperimetric inequalities and sufficient conditions for finite perimeter on metric spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 129–154.

    MathSciNet  MATH  Google Scholar 

  32. R. Korte, P. Lahti, X. Li and N. Shanmugalingam, Notions of Dirichlet problem for functions of least gradient in metric measure spaces, Rev. Mat. Iberoam. 35 (2019), 1603–1648.

    MathSciNet  MATH  Google Scholar 

  33. P. Lahti, A notion of fine continuity for BV functions on metric spaces, Potential Anal. 46 (2017), 279–294.

    MathSciNet  MATH  Google Scholar 

  34. P. Lahti and N. Shanmugalingam, Fine properties and a notion ofquasicontinuity for BV functions on metric spaces, J. Math. Pures Appl. (9) 107 (2017), 150–182.

    MathSciNet  MATH  Google Scholar 

  35. V. Latvala, A theorem on fine connectedness, Potential Anal. 12 (2000), 221–232.

    MathSciNet  MATH  Google Scholar 

  36. P. Lindqvist and O. Martio, Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math. 155 (1985), 153–171.

    MathSciNet  MATH  Google Scholar 

  37. J. Maly and W. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, American Mathematical Society, Providence, RI, 1997.

    MATH  Google Scholar 

  38. J. M. Mazón, J. D. Rossi and S. Segura de Leon, Functions of least gradient and 1-harmonic functions, Indiana Univ. Math. J. 63 (2014), 1067–1084.

    MathSciNet  MATH  Google Scholar 

  39. A. Mercaldo, S. Segura de Leon and C. Trombetti, On the solutions to 1-Laplacian equation with L1data, J. Funct. Anal. 256 (2009), 2387–2416.

    MathSciNet  MATH  Google Scholar 

  40. M. Miranda, Jr., Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9) 82 (2003), 975–1004.

    MathSciNet  MATH  Google Scholar 

  41. T. Mäkäläinen, Adams inequality on metric measure spaces, Rev. Mat. Iberoam. 25 (2009), 533–558.

    MathSciNet  MATH  Google Scholar 

  42. C. Scheven and T. Schmidt, BV supersolutions to equations of 1-Laplace and minimal surface type, J. Differential Equations 261 (2016), 1904–1932.

    MathSciNet  MATH  Google Scholar 

  43. C. Scheven and T. Schmidt, On the dual formulation of obstacle problems for the total variation and the area functional, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35 (2018), 1175–1207.

    MathSciNet  MATH  Google Scholar 

  44. N. Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), 1021–1050.

    MathSciNet  MATH  Google Scholar 

  45. N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243–279.

    MathSciNet  MATH  Google Scholar 

  46. P. Sternberg, G. Williams and W. Ziemer, Existence, uniqueness, and regularity for functions of least gradient, J. Reine Angew. Math. 430 (1992), 35–60.

    MathSciNet  MATH  Google Scholar 

  47. W. P. Ziemer, Weakly Differentiable Functions, Springer, New York, 1989.

    MATH  Google Scholar 

  48. W. Ziemer and K. Zumbrun, The obstacle problem for functions of least gradient, Math. Bohem. 124 (1999), 193–219.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research was funded by a grant from the Finnish Cultural Foundation. The author wishes to thank Nageswari Shanmugalingam for helping to derive the lower semicontinuity property of 1-superminimizers, and the anonymous referee for carefully reading the manuscript and giving helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panu Lahti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahti, P. Superminimizers and a weak Cartan property for p = 1 in metric spaces. JAMA 140, 55–87 (2020). https://doi.org/10.1007/s11854-020-0082-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0082-y

Navigation