Skip to main content
Log in

Cost, 2-Betti numbers and the sofic entropy of some algebraic actions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In 1987, Ornstein and Weiss discovered that the Bernoulli 2-shift over the rank two free group factors onto the seemingly larger Bernoulli 4-shift. With the recent creation of an entropy theory for actions of sofic groups (in particular free groups), their example shows the surprising fact that entropy can increase under factor maps. In order to better understand this phenomenon, we study a natural generalization of the Ornstein-Weiss map for countable groups. We relate the increase in entropy to the cost and to the first 2-Betti number of the group. More generally, we study coboundary maps arising from simplicial actions and, under certain assumptions, relate 2-Betti numbers to the failure of the Yuzvinsky addition formula. This work is built upon a study of entropy theory for algebraic actions. We prove that for actions on profinite groups via continuous group automorphisms, topological sofic entropy is equal to measure sofic entropy with respect to Haar measure whenever the homoclinic subgroup is dense. For algebraic actions of residually finite groups we find sufficient conditions for the sofic entropy to be equal to the supremum exponential growth rate of periodic points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abért and B. Weiss, Bernoulli actions are weakly contained in any free action, Ergodic Theory Dynam. Systems 33 (2013), 323–333.

    MathSciNet  MATH  Google Scholar 

  2. R. L. Adler, A. G. Konheim and M. H. McAndrew. Topological entropy, Trans. Am. Math. Soc. 114 (1965), 309–319.

    MathSciNet  MATH  Google Scholar 

  3. A. Alpeev and B. Seward, Krieger’s finite generator theorem for ergodic actions of countable groups III, preprint, https://doi.org/arxiv.org/abs/1705.09707.

  4. K. Ball, Factors of independent and identically distributed processes with non-amenable group actions, Ergodic Theory Dynam. Systems 25 (2005), 711–730.

    MathSciNet  MATH  Google Scholar 

  5. L. Bartholdi, Amenability of groups is characterized by Myhill’s theorem, J. Eur. Math. Soc. 21 (2019), 3191–3197.

    MathSciNet  MATH  Google Scholar 

  6. L. Bartholdi, Linear cellular automata and duality, preprint, https://doi.org/arxiv.org/abs/1612.06117.

  7. N. Bergeron and D. Gaboriau, Asymptotique des nombres de Betti, invariants l 2et laminations, Comment. Math. Helv. 79 (2004), 362–395.

    MathSciNet  MATH  Google Scholar 

  8. M. Björklund and R. Miles, Entropy range problems and actions of locally normal groups, Discrete Contin. Dyn. Syst. 25 (2009), 981–989.

    MathSciNet  MATH  Google Scholar 

  9. L. Bowen, A new measure conjugacy invariant for actions of free groups, Ann. of Math. 171 (2010), 1387–1400.

    MathSciNet  MATH  Google Scholar 

  10. L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), 217–245.

    MathSciNet  MATH  Google Scholar 

  11. L. Bowen, Weak isomorphisms between Bernoulli shifts, Israel J. Math. 83 (2011), 93–102.

    MathSciNet  MATH  Google Scholar 

  12. L. Bowen, Entropy for expansive algebraic actions of residually finite groups, Ergodic Theory Dynam. Systems 31 (2011), 703–718.

    MathSciNet  MATH  Google Scholar 

  13. L. Bowen, Sofic entropy and amenable groups, Ergodic Theory Dynam. Systems, 32 (2012), 427–466.

    MathSciNet  MATH  Google Scholar 

  14. L. Bowen, Entropy theory for sofic groupoids I: the foundations, J. Anal. Math. 124 (2014), 149–233.

    MathSciNet  MATH  Google Scholar 

  15. L. Bowen and Y. Gutman, A Juzvinskii addition theorem for finitely generated free group actions, Ergodic Theory Dynam. Systems 34 (2014), 95–109.

    MathSciNet  MATH  Google Scholar 

  16. L. Bowen and H. Li, Harmonic models and spanning forests of residually finite groups, J. Funct. Anal. 263 (2012), 1769–1808.

    MathSciNet  MATH  Google Scholar 

  17. J. Cheeger and M. Gromov, L 2-cohomology and group cohomology, Topology 25 (1986), 189–215.

    MathSciNet  MATH  Google Scholar 

  18. N.-P. Chung and H. Li, Homoclinic group, IE group, and expansive algebraic actions, Invent. Math. 199 (2015), 805–858.

    MathSciNet  MATH  Google Scholar 

  19. C. Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (2006), 737–758.

    MathSciNet  MATH  Google Scholar 

  20. W. Dicks and P. A. Linnell, L 2-Betti numbers of one-relator groups, Math. Ann. 337 (2007), 855–874.

    MathSciNet  MATH  Google Scholar 

  21. T. Downarowicz, Entropy in Dynamical Systems, Cambridge University Press, New York, 2011.

    MATH  Google Scholar 

  22. G. Elek, The Euler characteristic of discrete groups and Yuzvinskii’s entropy addition formula, Bull. Lond. Math. Soc. 31 (1999), 661–664.

    MathSciNet  MATH  Google Scholar 

  23. G. Elek, Amenable groups, topological entropy and Betti numbers, Israel J. Math. 132 (2002), 315–336.

    MathSciNet  MATH  Google Scholar 

  24. G. Elek and E. Szabó, Hyperlinearity, essentially free actions and L 2 -invariants. The sofic property, Math. Ann. 332 (2005), 421–441.

    MathSciNet  MATH  Google Scholar 

  25. M. Ershov and W. Lück, The first L 2-Betti number and approximation in arbitrary characteristic, Doc. Math. 19 (2014), 313–331.

    MathSciNet  MATH  Google Scholar 

  26. M. Farber, Geometry of growth: approximation theorems for L 2invariants, Math. Ann. 311 (1998), 335–375.

    MathSciNet  MATH  Google Scholar 

  27. J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras, I., Trans. Amer. Math. Soc. 234 (1977), 289–324.

    MathSciNet  MATH  Google Scholar 

  28. D. Gaboriau, Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000), 41–98.

    MathSciNet  MATH  Google Scholar 

  29. D. Gaboriau. Invariants L 2de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Etudes Sci. 95 (2002), 93–150.

    MATH  Google Scholar 

  30. D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann’s problem, Invent. Math. 177 (2009), 533–540.

    MathSciNet  MATH  Google Scholar 

  31. E. Glasner, Ergodic Theory via Joinings. American Mathematical Society, Providence, RI, 2003.

    MATH  Google Scholar 

  32. B. Hayes, Fuglede-Kadison determinants and sofic entropy, Geom. Funct. Anal. 26 (2016), 520–606.

    MathSciNet  MATH  Google Scholar 

  33. S. A. Juzvinskiĭ, Metric properties of the endomorphisms of compact groups, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 1295–1328.

    MathSciNet  Google Scholar 

  34. J. C. Keiffer, A generalized Shannon-McMillan Theorem for the action of an amenable group on a probability space, Ann. Probab. 3 (1975), 1031–1037.

    MathSciNet  Google Scholar 

  35. D. Kerr, Sofic measure entropy via finite partitions, Groups Geom. Dyn. 7 (2013), 617–632.

    MathSciNet  MATH  Google Scholar 

  36. D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), 501–558.

    MathSciNet  MATH  Google Scholar 

  37. D. Kerr and H. Li, Soficity, amenability, and dynamical entropy, Amer. J. Math. 135 (2013), 721–761.

    MathSciNet  MATH  Google Scholar 

  38. A. N. Kolmogorov, New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces, Dokl. Akad. Nauk 119 (1958), 861–864.

    MATH  Google Scholar 

  39. A. N. Kolmogorov, Entropy per unit time as a metric invariant for automorphisms, Dokl. Akad. Nauk 124 (1959), 754–755.

    MathSciNet  MATH  Google Scholar 

  40. G. Levitt. On the cost of generating an equivalence relation, Ergodic Theory Dynam. Systems 15 (1995), 1173–1181.

    MathSciNet  MATH  Google Scholar 

  41. H. Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math. 176 (2012), 303–347.

    MathSciNet  MATH  Google Scholar 

  42. D. Lind, A survey of algebraic actions of the discrete Heisenberg group, Russian Math. Surveys 70 (2015), 657–714.

    MathSciNet  MATH  Google Scholar 

  43. D. Lind and K. Schmidt, preprint, 2009.

  44. D. Lind, K. Schmidt, and T. Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), 593–629.

    MathSciNet  MATH  Google Scholar 

  45. W. Lück, Approximating L 2-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), 455–481.

    MathSciNet  MATH  Google Scholar 

  46. W. Lück, L 2-Invariants: Theory and Applications to Geometry and K-theory, Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  47. W. Lück and D. Osin, Approximating the first L 2-Betti number of residually finite groups, J. Topol. Anal. 3 (2011), 153–160.

    MathSciNet  MATH  Google Scholar 

  48. N. Meesschaert, S. Raum and S. Vaes, Stable orbit equivalence of Bernoulli actions of free groups and isomorphism of some of their factor actions, Expo. Math. 31 (2013), 274–294.

    MathSciNet  MATH  Google Scholar 

  49. T. Meyerovitch, Positive sofic entropy implies finite stabilizer, Entropy 18 (2016), paper no. 263.

    MathSciNet  Google Scholar 

  50. R. Miles, The entropy of algebraic actions of countable torsion-free abelian groups, Fund. Math. 201 (2008), 261–282.

    MathSciNet  MATH  Google Scholar 

  51. D. Ornstein and B. Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 161–164.

    MathSciNet  MATH  Google Scholar 

  52. D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987), 1–141.

    MathSciNet  MATH  Google Scholar 

  53. V. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), 449–480.

    MathSciNet  MATH  Google Scholar 

  54. J. Peterson and A. Thom, Group cocycles and the ring of affiliated operators, Invent. Math. 185 (2011), 561–592.

    MathSciNet  MATH  Google Scholar 

  55. S. Popa, Some computations of 1-cohomology groups and construction of non orbit equivalent actions, J. Inst. Math. Jussieu 5 (2006), 309–332.

    MathSciNet  MATH  Google Scholar 

  56. V. A. Rokhlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5, 3–56.

    MathSciNet  Google Scholar 

  57. B. Seward, Ergodic actions of countable groups and finite generating partitions, Groups Geom. Dyn. 9 (2015), 793–810.

    MathSciNet  MATH  Google Scholar 

  58. B. Seward, Every action of a non-amenable group is the factor of a small action, J. Mod. Dyn. 8 (2014), 251–270.

    MathSciNet  MATH  Google Scholar 

  59. B. Seward, Krieger’s finite generator theorem for actions of countable groups I, Invent. Math. 215 (2019), 265–310.

    MathSciNet  MATH  Google Scholar 

  60. B. Seward, Krieger’s finite generator theorem for actions of countable groups II, J. Mod. Dyn. 15 (2019), 1–39.

    MathSciNet  MATH  Google Scholar 

  61. B. Seward and R. D. Tucker-Drob, Borel structurability on the 2-shift of a countable groups, Ann. Pure Appl. Logic 167 (2016), 1–21.

    MathSciNet  MATH  Google Scholar 

  62. A. Thom, Sofic groups and Diophantine approximation, Comm. Pure Appl. Math. 61 (2008), 1155–1171.

    MathSciNet  MATH  Google Scholar 

  63. R. D. Tucker-Drob, Invariant means and the structure of inner amenable groups, preprint. https://doi.org/arxiv.org/abs/1407.7474.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Seward.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaboriau, D., Seward, B. Cost, 2-Betti numbers and the sofic entropy of some algebraic actions. JAMA 139, 1–65 (2019). https://doi.org/10.1007/s11854-020-0072-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0072-0

Navigation