Skip to main content
Log in

Monomial convergence for holomorphic functions on r

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let \(\mathcal{F}\) be either the set of all bounded holomorphic functions or the set of all m-homogeneous polynomials on the unit ball of r. We give a systematic study of the sets of all u ∊ r for which the monomial expansion \(\sum\nolimits_\alpha {{{{\partial ^\alpha }f(0)} \over {\alpha !}}{u^\alpha }} \) of every f\(\mathcal{F}\) converges. Inspired by recent results from the general theory of Dirichlet series, we establish as our main tool independently interesting, upper estimates for the unconditional basis constants of spaces of polynomials on r spanned by finite sets of monomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Aron and J. Globevnik, Analytic functions on c 0, Rev. Mat. Complut. 2 (1989), 27–33.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Balasubramanian, B. Calado and H. Queffélec, The Bohr inequality for ordinary Dirichlet series, Studia Math. 175 (2006), 285–304.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Balazard, Remarques sur un théorème de G. Hálasz et A. Sárközy, Bull. Soc. Math. France 117 (1989), 389–413.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bayart, Maximum modulus of random polynomials, Q. J. Math. 63 (2010), 21–39.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bayart, A. Defant, L. Frerick, M. Maestre and P. Sevilla-Peris, Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables, Math. Ann. 368 (2017), 837–876.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Bayart, D. Pellegrino and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to \(\sqrt {({\rm{log}}\;n)/n} \), Adv. Math. 264 (2014), 726–746.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. P. Boas, Majorant series, J. Korean Math. Soc. 37 (2000), 321–337.

    MathSciNet  MATH  Google Scholar 

  8. H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen\({{{a_n}} \over {{n^2}}}\), Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. (1913), 441–488.

  9. R. de la Bretèche, Sur l’ordre de grandeur des polynômes de Dirichlet, Acta Arith. 134 (2008), 141–148.

    Article  MathSciNet  MATH  Google Scholar 

  10. O. F. Brevig, On the Sidon constant for Dirichlet polynomials, Bull. Sci. Math. 138 (2014), 656–664.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Defant and L. Frerick, The Bohr radius of the unit ball of ℓ p n, J. Reine Angew. Math. 2011 (2011), 131–147.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounaïes and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. 174 (2011), 485–497.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Defant, D. García and M. Maestre, Bohr power series theorem and local Banach space theory, J. Reine Angew. Math. 557 (2003), 173–197.

    MathSciNet  MATH  Google Scholar 

  14. A. Defant and N. Kalton, Unconditionality in spaces of m-homogeneous polynomials, Q. J. Math. 56 (2005), 53–64.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Defant, M. Maestre and C. Prengel, Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables, J. Reine Angew. Math. 634 (2009), 13–49.

    MathSciNet  MATH  Google Scholar 

  16. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1938.

    MATH  Google Scholar 

  17. J.-P. Kahane, Some Random Series of Functions, Cambridge Stud. Adv. Math., Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  18. S. V. Konyagin and H. Queffelec, The Translation ½ in the Theory of Dirichlet Series, Real Anal. Exchange 27 (2001), 155–176.

    MathSciNet  MATH  Google Scholar 

  19. L. Lempert, The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc. 12 (1999), 775–793.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013.

    Book  MATH  Google Scholar 

  21. R. A. Ryan, Holomorphic mappings on ℓ 1, Trans. Amer. Math. Soc. 302 (1987), 797.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors thank the referee for the careful reading of the manuscript and remarks regarding Section 3.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bayart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayart, F., Defant, A. & Schlüters, S. Monomial convergence for holomorphic functions on r. JAMA 138, 107–134 (2019). https://doi.org/10.1007/s11854-019-0022-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0022-x

Navigation