Skip to main content
Log in

Cyclic polynomials in anisotropic Dirichlet spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Consider the Dirichlet-type space on the bidisk consisting of holomorphic functions \(f(z_1,z_2):=\sum_{k,l\geq0}a_{kl}z_1^kz_2^l\) such that

$$\sum_{^{k,l\geq0}}(k+1)^{\alpha_1}(l+1)^{\alpha_2}|a_{kl}|^{2}<\infty.$$

Here the parameters α1, α2 are arbitrary real numbers. We characterize the polynomials that are cyclic for the shift operators on this space. More precisely, we show that, given an irreducible polynomial p(z1, z2) depending on both z1 and z2 and having no zeros in the bidisk:

  • if α1 + α2 ≤ 1, then p is cyclic;

  • if α1 + α2 > 1 and min{α1, α2} ≤ 1, then p is cyclic if and only if it has finitely many zeros in the two-torus \(\mathbb{T}^2\);

  • if min{α1, α2} > 1, then p is cyclic if and only if it has no zeros in \(\mathbb{T}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Agler and J. E. McCarthy, Pick Interpolation and Hilbert Function Spaces, Graduate Studies in Mathematics, Vol. 44, American Mathematical Society, Providence, RI, 2004.

  2. C. Bénéteau, A. A. Condori, C. Liaw, D. Seco and A. A. Sola, Cyclicity in Dirichlet-type spaces and extremal polynomials II: functions on the bidisk, Pacific J. Math. 276 (2015), 35–58.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Bénéteau, G. Knese, Ł. Kosiński, C. Liaw, D. Seco and A. Sola, Cyclic polynomials in two variables, Trans. Amer. Math. Soc. 368 (2016), 8737–8754.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Brown and A. L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), 269–304.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Chattopadhyay, B. K. Das, J. Sarkar and S. Sarkar, Wandering subspaces of the Bergman space and the Dirichlet space over Dn, Integral Equations Operator Theory 79 (2014), 567–577.

    Article  MathSciNet  MATH  Google Scholar 

  6. O. El-Fallah, K. Kellay, J. Mashreghi and T. Ransford, A Primer on the Dirichlet Space, Cambridge Tracts in Math., Vol. 203, Cambridge University Press, Cambridge, 2014.

    MATH  Google Scholar 

  7. J. E. Fornaess and B. Stensønes, Lectures on Counterexamples in Several Complex Variables, Princeton University Press, Princeton, NJ, 1987.

    MATH  Google Scholar 

  8. R. Gelca, Rings with topologies induced by spaces of functions, Houston J. Math. 21 (1995), 395–405.

    MathSciNet  MATH  Google Scholar 

  9. H. Hedenmalm, Outer functions in function algebras on the bidisc, Trans. Amer. Math. Soc. 306 (1988), 697–714.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.

    Book  MATH  Google Scholar 

  11. D. Jupiter and D. Redett, Multipliers on Dirichlet type spaces, Acta Sci. Math. (Szeged) 72 (2006), 179–203.

    MathSciNet  MATH  Google Scholar 

  12. H. T. Kaptanoğlu, Möbius-invariant Hilbert spaces in polydiscs, Pacific J. Math. 163 (1994), 337–360.

    Google Scholar 

  13. G. Knese, Polynomials defining distinguished varieties, Trans. Amer. Math. Soc 362 (2010), 5635–5655.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Knese, Polynomials with no zeros on the bidisk, Anal. PDE 3 (2010), 109–149.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. G. Krantz and H. R. Parks, A Primer of Real analytic Functions, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser, Boston, MA, 2002.

    Book  Google Scholar 

  16. S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser Verlag, Basel, 1991.

    Book  MATH  Google Scholar 

  17. V. Mandrekar, The validity of Beurling theorems in polydisks, Proc. Amer. Math. Soc. 103 (1988), 145–148.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. E. McCarthy, Shining a Hilbertian lamp on the bidisk. in Topics in complex analysis and operator theory, Contemp. Math., Vol. 561, American Mathematical Soceity, Providence, RI, 2012, pp. 49–65

    Article  MATH  Google Scholar 

  19. J. H. Neuwirth, J. Ginsberg, and D. J. Newman, Approximation by { f (kx)}, J. Funct. Anal. 5 (1970), 194–203.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, Inc., New York–Amsterdam, 1969.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Kosiński.

Additional information

GK supported by NSF grant DMS-1363239.

ŁK supported by the NCN grant UMO-2014/15/D/ST1/01972.

TR supported by grants from NSERC and the Canada research chairs program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knese, G., Kosiński, Ł., Ransford, T.J. et al. Cyclic polynomials in anisotropic Dirichlet spaces. JAMA 138, 23–47 (2019). https://doi.org/10.1007/s11854-019-0014-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0014-x

Navigation