Journal d'Analyse Mathématique

, Volume 137, Issue 1, pp 429–447 | Cite as

Fatou and brothers Riesz theorems in the infinite-dimensional polydisc

  • Alexandru Aleman
  • Jan-Fredrik OlsenEmail author
  • Eero Saksman


We study the boundary behavior of functions in the Hardy spaces on the infinite-dimensional polydisc. These spaces are intimately related to the Hardy spaces of Dirichlet series. We exhibit several Fatou and Marcinkiewicz- Zygmund type theorems for radial convergence of functions with Fourier spectrum supported on \(\mathbb{N}_0^\infty\cup(-\mathbb{N}_0^\infty)\). As a consequence one obtains easy new proofs of the brothers F. and M. Riesz Theorems in infinite dimensions, as well as being able to extend a result of Rudin concerning which functions are equal to the modulus of an H1 function almost everywhere to \(\mathbb{T}^\infty\). Finally, we provide counterexamples showing that the pointwise Fatou theorem is not true in infinite dimensions without restrictions to the mode of radial convergence even for bounded analytic functions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen Σ a n/n s, Nachr. Akad.Wiss. Göttingen Math.-Phys. Kl. (1913), 441–488.zbMATHGoogle Scholar
  2. [2]
    Brian J. Cole and T.W. Gamelin, Representing measures andHardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. 53 (1986), 112–142.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics, Vol. 96, Academic Press, New York, 1981.Google Scholar
  4. [4]
    H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. Helson, Compact groups and Dirichlet series, Ark.Mat. 8 (1969), 139–143.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165–202.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Hilbert, Wesen und Ziele einer Analysis der unendlichvielen unabhängigen Variabeln, Rend. Circ. Mat. Palermo 27 (1909), 59–74.CrossRefzbMATHGoogle Scholar
  8. [8]
    O. Kallenberg, Foundations of Modern Probability, Probability and its Applications (New York), Springer-Verlag, New York, 2002.CrossRefzbMATHGoogle Scholar
  9. [9]
    H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Harish-Chandra Research Institute Lecture Notes, Vol. 2, Hindustan Book Agency, New Delhi, 2013.Google Scholar
  10. [10]
    W. Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Mathematics, Vol. 12, Interscience Publishers, New York–London, 1962.Google Scholar
  11. [11]
    W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, New York–Amsterdam, 1969.zbMATHGoogle Scholar
  12. [12]
    E. Saksman and K. Seip, Integral means and boundary limits of Dirichlet series, Bull. Lond. Math. Soc. 41 (2009), 411–422.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Zygmund, Trigonometric Series: Vols. I, II, Cambridge University Press, London, 1968.Google Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  • Alexandru Aleman
    • 1
  • Jan-Fredrik Olsen
    • 1
    Email author
  • Eero Saksman
    • 2
  1. 1.Centre for Mathematical SciencesLund UniversityLundSweden
  2. 2.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations