Skip to main content
Log in

On the time slicing approximation of Feynman path integrals for non-smooth potentials

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider the time slicing approximations of Feynman path integrals, constructed via piecewice classical paths. A detailed study of the convergence in the norm operator topology, in the space B(L2(ℝd)) of bounded operators on L2, and even in finer operator topologies, was carried on by D. Fujiwara in the case of smooth potentials with an at most quadratic growth. In the present paper we show that the result about the convergence in B(L2(ℝd)) remains valid if the potential is only assumed to have second space derivatives in the Sobolev space Hd+1(ℝd) (locally and uniformly), uniformly in time. The proof is non-perturbative in nature, but relies on a precise short time analysis of the Hamiltonian flow at this Sobolev regularity and on the continuity in L2 of certain oscillatory integral operators with non-smooth phase and amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. S. Albeverio, R. Höegh-Krohn, and S. Mazzucchi, Mathematical Theory of Feynman Path Integrals. An Introduction, Lecture Notes in Mathematics, Vol. 523, Springer-Verlag, Berlin, 2008.

  2. G. Arsu, On Kato–Sobolev type spaces, arXiv:1209.6465.

  3. A. Boulkhemair, Estimations L 2 precisées pour des integrales oscillantes, Comm. Partial Differential Equations 22 (1997), 165–184.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Campbell, S. Hencl, and F. Konopecký, The weak inverse mapping theorem, Z. Anal. Anwend 34 (2015), 321–342.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis, Manifolds and Physics, Part 1: Basics, North-Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  6. E. Cordero, K. Gröchenig, F. Nicola, and L. Rodino, Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand class, J. Math. Phys. 55 (2014), art. no. 081506.

    Google Scholar 

  7. E. Cordero, F. Nicola, and L. Rodino, Wave packet analysis of Schrödinger equations in analytic function spaces, Adv. Math. 278 (2015), 182–209.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Cordero, F. Nicola, and L. Rodino, Schrödinger equation with rough Hamiltonians, Discrete Contin. Dyn. Syst. Ser. A 35 (2015), 4805–4821.

    Google Scholar 

  9. R. Feynman, Space-time approach to non-relativistic Quantum Mechanics, Rev. Modern Phys. 20 (1948), 367–387.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Feynman and A. R. Hibbs, QuantumMechanics and Path Integrals, Dover,Mineola, NY, 2010.

    MATH  Google Scholar 

  11. D. Fujiwara, A construction of the fundamental solution for the Schrödinger equation, J. Anal. Math. 35 (1979), 41–96.

    Google Scholar 

  12. D. Fujiwara, Remarks on convergence of some Feynman path integrals, Duke Math. J. 47 (1980), 559–600.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Fujiwara, A remark on Taniguchi-Kumanogo theorem for product of Fourier integral operators, in Pseudo-differential Operators, Proc. Oberwolfach 1986, Lecture Notes in Math., Vol. 1256, Berlin, Springer, 1987, pp. 135–153.

    MATH  Google Scholar 

  14. D. Fujiwara, The stationary phase method with an estimate of the remainder term on a space of large dimension, Nagoya Math. J. 124 (1991), 61–97.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev manifold, in Functional Analysis and Related Topics, 1991 (Kyoto), Lecture Notes in Math., Vol. 1540, Springer, Berlin, 1993, pp. 39–53

  16. D. Fujiwara, An integration by parts formula for Feynman path integrals, J. Math. Soc. Japan 65 (2013), 1273–1318.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Fujiwara and N. Kumano-go, Smooth functional derivatives in Feynman path integrals by time slicing approximation, Bull. Sci. Math. 129 (2005), 57–79.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Fujiwara and N. Kumano-go, The second term of the semi-classical asymptotic expansion for Feynman path integrals with integrand of polynomial growth, J. Math. Soc. Japan 58 (2006), 837–867.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Fujiwara and T. Tsuchida, The time slicing approximation of the fundamental solution for the Schrödinger equation with electromagnetic fields, J. Math. Soc. Japan 49 (1997), 299–327.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Ichinose, Convergence of the Feynman path integral in the weighted Sobolev spaces and the representation of correlation functions, J. Math. Soc. Japan 55 (2003), 957–983.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Ichinose and H. Tamura, Results on convergence in norm of exponential product formulas and pointwise of the corresponding integral kernels, in Modern Analysis and Applications, Operator Theory: Advances and Applications, Vol. 190, Birkhäuser, Basel, 2009, pp. 315–327.

  22. H. Ichi, T. Kappeler, and P. Topalov, On the regularity of the composition of diffeomorphisms, Mem. Amer. Math. Soc. 226 (2013), 1–72.

    MathSciNet  Google Scholar 

  23. T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal. 58 (1975), 181–205.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Kitada, On a construction of the fundamental solution for Schrödinger equations, Fac. Sci. Univ. Tokyo Sec. IA 27 (1980), 193–226.

    MATH  Google Scholar 

  25. H. Kitada and H. Kumano-go, A family of Fourier integral operators and the fundamental solution for a Schrödinger equation, Osaka J. Math. 18 (1981), 291–360.

    Google Scholar 

  26. H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 (2004), 217–284.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Kumano-go, A construction of the fundamental solution for Schrödinger equations, J. Math. Sci. Univ. Tokyo 2 (1995), 441–498.

    MathSciNet  Google Scholar 

  28. N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation, Bull. Sci. Math. 128 (2004), 197–251.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Kumano-go, Phase space Feynman path integrals with smooth functional derivatives by time slicing approximation, Bull. Sci. Math. 135 (2011), 936–987.

    Article  MathSciNet  MATH  Google Scholar 

  30. NKumano go and D. Fujiwara, Phase spaceFeynman path integrals via piecewise bicharacteristic paths and their semiclassical approximations, Bull. Sci. Math. 132 (2008), 313–357.

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Kumano-go and D. Fujiwara, Feynman path integrals and semiclassical approximation, in Algebraic Analysis and the Exact WKB Analysis for Systems of Differential Equations, RIMS Kôkyôroku Bessatsu B5, Research Institute for Mathematical Sciences, Kyoto, 2008, pp. 241–263.

    MATH  Google Scholar 

  32. J. Marzuola, J. Metcalfe, and D. Tataru, Wave packet parametrices for evolutions governed by PDO’s with rough symbols, Proc. Amer. Math. Soc. 136 (2008), 597–604.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Mazzucchi, Mathematical Feynman Path Integrals and Their Applications, World Scientific, Hackensack, NJ, 2009.

    Book  MATH  Google Scholar 

  34. F. Nicola, Convergence in Lp for Feynman path integrals, Adv. Math. 294 (2016), 384–409.

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., Ser. (1959), no. 13, 115–162.

    Google Scholar 

  36. M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

    MATH  Google Scholar 

  37. M. Ruzhansky and M. Sugimoto, Global L2 boundedness theorems for a class of Fourier integral operators, Comm. Partial Differential Equations 31 (2006), 547–569.

    Article  MathSciNet  MATH  Google Scholar 

  38. L.S. Schulman, Techniques and Applications ofPath Integration,Monographs and Texts in Physics and Astronomy, Dover, Mineola, NY, 2005.

    Google Scholar 

  39. D. Tataru, Phase space transforms and microlocal analysis. in Phase Space Analysis of Partial Differential Equations. Vol. II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2004, pp. 505–524.

    MATH  Google Scholar 

  40. T. Tsuchida, Remarks on Fujiwara’s stationary phase method on a space of large dimension with a phase function involving electromagnetic fields, Nagoya Math. J. 136 (1994), 157–189.

    Article  MathSciNet  MATH  Google Scholar 

  41. K. Yajima, Schrödinger evolution equations with magnetic fields, J. Anal. Math. 56 (1991), 29–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Nicola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicola, F. On the time slicing approximation of Feynman path integrals for non-smooth potentials. JAMA 137, 529–558 (2019). https://doi.org/10.1007/s11854-019-0003-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0003-0

Navigation