Journal d'Analyse Mathématique

, Volume 137, Issue 2, pp 507–528 | Cite as

A discrete Hardy’s uncertainty principle and discrete evolutions

  • Aingeru Fernández-BertolinEmail author


In this paper we give a discrete version of Hardy’s uncertainty principle, by using complex variable arguments, as in the classical proof of Hardy’s principle. Moreover, we give an interpretation of this principle in terms of decaying solutions to the discrete Schrödinger and heat equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. B. Andersen, A connection between the uncertainty principles on the real line and on the circle, arXiv:1307.4904v1 [math.FA].Google Scholar
  2. [2]
    J. A. Barceló, L. Fanelli, S. Gutiérrez, A. Ruiz and M. C. Vilela, Hardy uncertainty principle and unique continuation properties of covariant Schrödinger flows, J. Funct. Anal. 264 (2013), 2386–2425.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. Carruthers and M. M. Nieto, Phase and Angle variables in quantum mechanics, Rev. Modern Phys. 40 (1968), 411–440.CrossRefGoogle Scholar
  4. [4]
    B. Cassano and L. Fanelli, Sharp Hardy uncertainty principle and Gaussian profiles of covariant Schrödinger evolutions, Trans. Amer.Math. Soc. 367 (2015), 2213–2233.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Cowling, L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega, The Hardy uncertainty principle revisited, Indiana Univ. Math. J. 59 (2010), 2007–2025.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Dym and H. P. McKean Jr., Fourier Series and Integrals, Probability and Mathematical Statistics, Vol. 14, Academic Press, New York–London, 1972.Google Scholar
  7. [7]
    L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, On uniqueness properties of solutions of Schrödinger equations, Comm. Partial Differential Equations 31 (2006), 1811–1823.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    L. Escauriaza, C.E. Kenig, G. Ponce, and L. Vega, Hardy’s uncertainty principle, convexity and Schrödinger equations, J. Eur. Math. Soc. 10 (2008), 883–907.CrossRefzbMATHGoogle Scholar
  9. [9]
    L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, The sharp Hardy uncertainty principle for Schrödinger evolutions, Duke Math. J. 155 (2010), 163–187.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Uniqueness properties of solutions to Schrödinger equations, Bull. Amer. Math. Soc. 49 (2012), 415–422.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Hardy uncertainty principle, convexity and parabolic evolutions, Comm. Math. Phys., Springer, Berlin–Heidelberg, 346 (2016), 667–678.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Fernández-Bertolin, Discrete uncertainty principles and virial identities, Appl. Comput. Harmon. Anal. 40 (2016), 229–259.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    T. N. T. Goodman, and S. S. Goh, Uncertainty principles and optimality on circles and spheres, in Advances in Constructive Approximation: Vanderbilt 2003, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2004, pp. 207–218.Google Scholar
  14. [14]
    L. Ignat and E. Zuazua, Convergence rates for dispersive approximation schemes to nonlinear Schrödinger equatons, J. Math. Pures Appl. (9) 98 (2012), 479–517.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Ph. Jaming, Yu. Lyubarskii, E. Malinnikova, and K.-M. Perfekt, Uniqueness for discrete Schrödinger evolutions, Rev. Mat. Iberoamericana 34 (2018), 949–966.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    B. Ya. Levin, Lectures on Entire Functions, Translations ofMathematical Monographs, American Mathematical Society, Providence, RI, 1996.CrossRefGoogle Scholar
  17. [17]
    NIST Digital Library ofMathematical Functions., Release 1.0.10 of 2015-08-07.Google Scholar
  18. [18]
    E. M. Stein and R. Shakarchi, Princeton Lecture in Analysis II. Complex Analysis, Princeton University Press, Princeton, NJ, 2003.Google Scholar
  19. [19]
    J. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, Philadelphia, PA, 2004.zbMATHGoogle Scholar
  20. [20]
    G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge; Macmillan, New York, 1944.zbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad del País Vasco UPV/EHUBilbaoSpain

Personalised recommendations