Existence of p-energy minimizers in homotopy classes and lifts of Newtonian maps


We study the notion of p-quasihomotopy in Newtonian classes of mappings and link it to questions concerning lifts of Newtonian maps, under the assumption that the target space is nonpositively curved. Using this connection we prove that every p-quasihomotopy class of Newtonian maps contains a minimizer of the p-energy if the target has hyperbolic fundamental group.

This is a preview of subscription content, access via your institution.


  1. [1]

    A. Björn and J. Björn, Nonlinear Potential Theory onMetric Spaces, EMS Tracts inMathematics, Vol. 17, European Mathematical Society (EMS), ZÜrich, 2011.

    Google Scholar 

  2. [2]

    M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, in Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  3. [3]

    N. Brodskiy, J. Dydak, B. Labuz, and A. Mitra, Covering maps for locally path-connected spaces, Fund. Math. 218 (2012), 13–46.

    Google Scholar 

  4. [4]

    J. Eells, Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J.Math. 86 (1964), 109–160.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Inst. Hautes Etudes Sci. Publ. Math. 76 (1992), 165–246.

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    P. Hajłasz, Sobolev spaces on metric-measure spaces, in Heat Kernels and Analysis onManifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math., Vol. 338, American Mathematical Society, Providence, RI, 2003, pp. 173–218.

    Google Scholar 

  7. [7]

    P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer.Math. Soc. 145 (2000).

    Google Scholar 

  8. [8]

    R. Hardt and F.-H. Lin, Mappings minimizing the Lp norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 555–588.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  10. [10]

    J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001.

    Google Scholar 

  11. [11]

    J. Heinonen, P. Koskela, N. Shanmugalingam, and J. Tyson, Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, New Mathematical Monographs, Cambridge University Press, Cambridge, 2015.

    Google Scholar 

  12. [12]

    J. Jost, Generalized harmonic maps between metric spaces, in Geometric Analysis and the Calculus of Variations, International Press, Cambridge, MA, 1996, pp. 143–174.

    Google Scholar 

  13. [13]

    S. Kallunki and N. Shanmugalingam, Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Math. 26 (2001), 455–464.

    MathSciNet  MATH  Google Scholar 

  14. [14]

    S. Keith, Modulus and the Poincaré inequality on metric measure spaces, Math. Z. 245 (2003), 255–292.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, Ann. of Math. (2) 167 (2008), 575–599.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    N. J. Korevaar and R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), 561–659.

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    W. S. Massey, Algebraic Topology: An Introduction, Harcourt, Brace & World, Inc., New York, 1967.

    Google Scholar 

  18. [18]

    A. Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature, in IRMA Lectures in Mathematics and Theoretical Physics, Vol. 6, European Mathematical Society (EMS), ZÜrich, 2005.

    Google Scholar 

  19. [19]

    S. Pigola and G. Veronelli, On the homotopy class of maps with finite p-energy into non-positively curved manifolds, Geom. Dedicata 143 (2009), 109–116.

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    R. Schoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), 333–341.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    R. Schoen and S. T. Yau, Compact group actions and the topology of manifolds with nonpositive curvature, Topology 18 (1979), 361–380.

    MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    E. Soultanis, Homotopy classes of Newtonian spaces, Rev. Mat. Iberoamericana 33 (2017), 951–994.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    B. White, Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math. 160 (1988), 1–17.

    MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    S. Willard, General Topology, Dover Publications, Inc., Mineola, NY, 2004.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Elefterios Soultanis.

Additional information

The author was supported by the Academy of Finland, project no. 1252293, and the Väisälä Foundation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soultanis, E. Existence of p-energy minimizers in homotopy classes and lifts of Newtonian maps. JAMA 137, 469–505 (2019). https://doi.org/10.1007/s11854-019-0001-2

Download citation