Skip to main content
Log in

Invariant convex bodies for strongly elliptic systems

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider uniformly strongly elliptic systems of the second order with bounded coefficients. First, sufficient conditions for the invariance of convex bodies are obtained for linear systems without zero order term on bounded domains and quasilinear systems of special form on bounded domains and on a class of unbounded domains. These conditions are formulated in algebraic form. They describe relation between the geometry of the invariant convex body and the coefficients of the system. Next, necessary conditions, which are also sufficient, for the invariance of some convex bodies are found for elliptic homogeneous systems with constant coefficients in a half-space. The necessary conditions are derived by using a criterion on the invariance of convex bodies for normalized matrix-valued integral transforms also obtained in the paper. In contrast with the previous studies of invariant sets for elliptic systems, no a priori restrictions on the coefficient matrices are imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II., Comm. Pure Appl. Math. 17 (1964), 35–92.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alikakos, Remarks on invariance in reaction-diffusion equations, Nonlinear Analysis Theory, Methods & Applications 5 (1981), 593–614.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Amann, Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J. Math. Anal. Appl. 65 (1978), 432–467.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. W. Bates, Containment for weakly coupled parabolic systems, Houston J. Math. 11 (1985), 151–158.

    MathSciNet  MATH  Google Scholar 

  5. J. W. Bebernes, K. N. Chueh, and W. Fulks, Some applications of invariance for parabolic systems, Indiana Univ. Math. J. 28 (1979), 269–277.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. W. Bebernes and K. Schmitt, Invariant sets and the Hukuhara-Kneser property for systems of parabolic partial differential equations, Rocky Mountain J. Math. 7 (1977), 557–567.

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu. D. Burago and V. G. Maz’ya, Potential Theory and the Function Theory for Irregular Regions, Zap. Nauchn. Sem. LOMI 3 (1967); English translation: Sem. in Mathematics, V. A. Steklov Math. Inst., Leningrad 3, Consultants Bureau, New York, 1969.

  8. K. N. Chueh, C. C. Conley, and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977), 373–391.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Conway, D. Hoff, and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Cosner and P. W. Schaefer, On the development of functionals which satisfy a maximum principle, Appl. Analysis 26 (1987), 45–60.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.

    Book  MATH  Google Scholar 

  12. G. I. Kresin and V. G. Maz’ya, Criteria for validity of the maximum modulus principle for solutions of linear parabolic systems, Ark. Math. 32 (1994), 121–155.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. I. Kresin and V. G. Maz’ya, On the maximum principle with respect to smooth norms for linear strongly coupled parabolic systems, Functional Differential Equations 5 (1998), 349–376.

    MathSciNet  MATH  Google Scholar 

  14. G. I. Kresin and V. G. Maz’ya, Criteria for validity of the maximum norm principle for parabolic systems, Potential Anal. 10 (1999), 243–272.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Kresin and V. Maz’ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems, Amer. Math. Soc., Providence, RI, 2012.

    Book  MATH  Google Scholar 

  16. G. Kresin and V. Maz’ya, Criteria for invariance of convex sets for linear parabolic systems, in Complex Analysis and Dynamical Systems VI, Amer. Math. Soc., Providence, RI, 2015, 227–241.

    Chapter  Google Scholar 

  17. H. J. Kuiper, Invariant sets for nonlinear elliptic and parabolic systems, SIAM J. Math. Anal. 11 (1980), 1075–1103.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. M. Landis, Second Order Equations of Elliptic and Parabolic Type, Amer. Math. Soc., Providence, RI, 1998.

    MATH  Google Scholar 

  19. R. Lemmert, Über die Invarianz konvexer Teilmengen eines normierten Raumes in bezug auf elliptische Differentialgleichungen, Comm. Partial Diff. Eq. 3 (1978), 297–318.

    Article  MATH  Google Scholar 

  20. Ya. B. Lopatinskiĭ, On a method of reducing boundary value problems for systems of differential equations of elliptic type to regular integral equations, Ukrain. Mat. Žurnal 5 (1953), 123–151 (Russian).

    Google Scholar 

  21. V. G. Maz’ya and G. I. Kresin, On the maximum principle for strongly elliptic and parabolic second order systems with constant coefficients, Mat. Sb. 125(167) (1984), 458–480 (Russian); English transl.: Math. USSR Sb., 53 (1986), 457–479.

    MathSciNet  MATH  Google Scholar 

  22. K. Otsuka, On the positivity of the fundamental solutions for parabolic systems, J. Math. Kyoto Univ. 28 (1988), 119–132.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967; Springer-Verlag, New York, 1984.

    Book  MATH  Google Scholar 

  24. R. Redheffer and W. Walter, Invariant sets for systems of partial differential equations. I. Parabolic equations, Arch. Rat. Mech. Anal. 67 (1978), 41–52.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Redheffer and W. Walter, Invariant sets for systems of partial differential equations. II. Firstorder and elliptic equations, Arch. Rat. Mech. Anal. 73 (1980), 19–29.

    Article  MATH  Google Scholar 

  26. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princton, NJ, 1970.

    Book  MATH  Google Scholar 

  27. C. Schaefer, Invariant sets and contractions for weakly coupled systems of parabolic differential equations, Rend. Mat. 13 (1980), 337–357.

    MathSciNet  MATH  Google Scholar 

  28. Z. Ya. Shapiro, The first boundary value problem for an elliptic system of differential equations, Mat. Sb. 28(70) (1951), 55–78 (Russian).

    Google Scholar 

  29. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin-Heidelberg-New York, 1983.

    Book  MATH  Google Scholar 

  30. V. A. Solonnikov, On general boundary value problems for systems elliptic in the Douglis-Nirenberg sense, Izv. Akad. Nauk SSSR, ser. Mat. 28 (1964), 665–706; English transl. Amer. Math. Soc. Transl. (2) 56 (1966), 193–232.

    MathSciNet  Google Scholar 

  31. W. Walter, Differential and Integral Inequalities, Springer, Berlin-Heidelberg-New York, 1970.

    Book  Google Scholar 

  32. H. F. Weinberger, Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. 8 (1975), 295–310.

    MathSciNet  MATH  Google Scholar 

  33. H. F. Weinberger, Some remarks on invariant sets for systems, in Maximum Principles and Eigenvalue Problems in Partial Differential Equations, Longman Scientific & Technical, 1988, pp. 189–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gershon Kresin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kresin, G., Maz′ya, V. Invariant convex bodies for strongly elliptic systems. JAMA 135, 203–224 (2018). https://doi.org/10.1007/s11854-018-0033-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0033-z

Navigation