Skip to main content
Log in

An indefinite Laplacian on a rectangle

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this note, we investigate the nonelliptic differential expression

$$A = - div\operatorname{sgn} \nabla $$

on a rectangular domain Ω in the plane. The seemingly simple problem of associating a self-adjoint operator with the differential expression A in L2(Ω) is solved here. Such indefinite Laplacians arise in mathematical models of metamaterials characterized by negative electric permittivity and/or negative magnetic permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, and G. Teschl, The Krein-von Neumann extension and its connection to an abstract buckling problem, Math. Nachr. 283 (2010), 165–179.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Behrndt and T. Micheler, Elliptic differential operators on Lipschitz domains and abstract boundary value problems, J. Funct. Anal. 267 (2014), 3657–3709.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bonnet-Ben Dhia, L. Chesnel and P. Ciarlet Jr., T-coercivity for scalar interface problems between dielectrics and metamaterials, ESIAM Math. Model Numer. Anal. 46 (2012), 1363–1387.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bonnet-Ben Dhia, M. Dauge, and K. Ramdani, Analyse spectral et singularités d’un probléme de transmission non coercive, C. R. Acad. Sci. Paris Ser. I Marh. 328 (1999), 717–720.

    Article  MATH  Google Scholar 

  5. G. Bouchitté, Ch. Bourel, and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Acad. Sci. Paris 347 (2009) 571–576.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance, Quant. J. Mech. Appl. Math. 63 (2010), 437–463.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Bouchitté and B. Schweizer, Homogenization of Maxwell’s equations in a split ring geometry, Multiscale Model. Simul. 8 (2010), 717–750.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl. 106 (1985), 367–413.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Dauge and B. Texier, Non-coercive transmission problems in polygonal domains, arXiv:1102.1409[math.NA].

  10. D. Felbacq and G. Bouchitté, Theory of mesoscopic magnetism in photonic crystals, Phys. Rev. Lett. 94 (2005), 183902.

    Article  Google Scholar 

  11. A. Fleige, S. Hassi, and H. de Snoo, A Krĕin space approach to representation theorems and generalized Friedrichs extensions, Acta Sci. Math. (Szeged) 66 (2000), 633–650.

    MathSciNet  MATH  Google Scholar 

  12. F. Gesztesy and M. Mitrea, A description of all self-adjoint extensions of the Laplacian and Krĕin-type resolvent formulas on non-smooth domains, J. Anal. Math. 113 (2011), 53–172.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Geymonat and F. Krasucki, On the existence of the Airy function in Lipschitz domains. Application to the traces of H 2, C. R. Acad. Sci. Paris Ser. 1 Math. 330 (2000), 355–360.

    Article  MATH  Google Scholar 

  14. D. Grieser, The plasmonic eigenvalue problem, Rev. Math. Phys. 26 (2014), 1450005.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985.

    MATH  Google Scholar 

  16. P. Grisvard, Singularities in Boundary Value Problems, Masson, Paris, 1992.

    MATH  Google Scholar 

  17. G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 425–513.

    MathSciNet  MATH  Google Scholar 

  18. L. Grubišić, V. Kostrykin, K. A. Makarov, and K. Veselić, Representation theorems for indefinite quadratic forms revisited, Mathematika 59 (2013), 169–189.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Hussein, Spectral theory of differential operators on finite metric graphs and on bounded domains, Ph.D thesis, University of Mainz, 2013.

    Google Scholar 

  20. A. Hussein, Sign-indefinite second order differential operators on finite metric graphs, Rev. Math. Phys. 26 (2014), 1430003.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1980.

    MATH  Google Scholar 

  22. M. G. Krĕin, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Mat. Sbornik (N.S.) 20 (62) (1947), 431–495.

    MathSciNet  MATH  Google Scholar 

  23. G. W. Milton and N.-A. P. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no 2074, 3027–3059.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. B. Pendry, Negative refraction, Contemp. Phys. 45 (2004), 191–202.

    Article  Google Scholar 

  25. R. Picard, S. Trostorff, and M. Waurick, Well-posedness via monotonicity–An overview, Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Birkhäuser/Springer, Cham, 2015, pp. 397–452.

    MATH  Google Scholar 

  26. D. R. Smith, J. B. Pendry and M. C. K. Wiltshire, Metamaterials and negative refractive index, Science 305 (2004), 788–792.

    Article  Google Scholar 

  27. S. Trostorff and M. Waurick, A note on elliptic type boundary value problems with maximal monotone relations, Math. Nachr. 287 (2014), 1545–1558.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Behrndt.

Additional information

This work is supported by the Austrian Science Fund (FWF), project P 25162-N26, Czech project RVO61389005 and the GACR grant No. 14-06818S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrndt, J., Krejčiřík, D. An indefinite Laplacian on a rectangle. JAMA 134, 501–522 (2018). https://doi.org/10.1007/s11854-018-0015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0015-1

Navigation