Advertisement

Journal d'Analyse Mathématique

, Volume 133, Issue 1, pp 313–334 | Cite as

Decoupling inequalities and some mean-value theorems

  • Jean Bourgain
Article

Abstract

The purpose of this paper is to present some further applications of the general decoupling theory from [B-D] and [B-D2] to certain diophantine issues. In particular, we consider mean value estimates relevant to the Bombieri- Iwaniec approach to exponential sums and arising in the work of Robert and Sargos [R-S]. Our main input is a new mean-value theorem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-D]
    J. Bourgain and C. Demeter, The proof of the l 2-decoupling conjecture, Ann. of Math. (2), 182 (2015), 351–389.MathSciNetCrossRefMATHGoogle Scholar
  2. [B-D2]
    J. Bourgain and C. Demeter, Decouplings for curves and hypersurfaces with nonzero Gaussian curvature, J. Anal.Math., 133 (2017), 279–311.CrossRefGoogle Scholar
  3. [B-G]
    J. Bourgain and L. Guth, Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal., 21 (2011), 1239–1295.MathSciNetCrossRefMATHGoogle Scholar
  4. [B-I1]
    E. Bombieri and H. Iwaniec, On the order of ξ (1/2 + it), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 449–472.MathSciNetMATHGoogle Scholar
  5. [B-I2]
    E. Bombieri and H. Iwaniec, Some mean value theorems for exponential sums, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 473–486.MathSciNetMATHGoogle Scholar
  6. [G-K]
    S. W. Graham and G. Kolesnik, Van der Corput’s Method of Exponential Sums, Cambridge University Press, Cambridge, 1991.CrossRefMATHGoogle Scholar
  7. [H]
    M. N. Huxley, Area, Lattice Points and Exponential Sums, The Clarendon Press, Oxford University Press, New York, 1996.MATHGoogle Scholar
  8. [H4]
    M. N. Huxley, Exponential sums and the Riemann zeta function IV, Proc. London Math. Soc. (3) 66 (1993), 1–40.MathSciNetCrossRefMATHGoogle Scholar
  9. [H5]
    M. N. Huxley, Exponential sums and the Riemann zeta function V, Proc. London Math. Soc. (3) 90 (2005), 1–41.MathSciNetCrossRefMATHGoogle Scholar
  10. [H-K]
    M. N. Huxley and G. Kolesnik, Exponential sums and the Riemann zeta function III, Proc. London Math. Soc. (3) 62 (1991), 449–468.MathSciNetCrossRefMATHGoogle Scholar
  11. [P]
    S. Parsell, A note on Weyl’s inequality for eighth powers, Rocky Mountain J. Math. 44 (2014), 259–268.MathSciNetCrossRefMATHGoogle Scholar
  12. [R-S]
    O. Robert and P. Sargos, Un théorème de moyenne pour les sommes d’exponentielles. Application à l’inégatité de Weyl, Publ. Inst. Math. (Beograd) N.S., 67 (2000), 14–30.MATHGoogle Scholar
  13. [W]
    T. Wooley, Mean value estimates for odd cubic Weyl sums, Bull. London Math. Soc., 47 (2015), 946–957.MathSciNetMATHGoogle Scholar
  14. [W2]
    T. Wooley, Translation invariance, exponential sums and Waring’s problem, arXiv:1404.3508v1[math.NT].Google Scholar

Copyright information

© Hebrew University Magnes Press 2017

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations