Journal d'Analyse Mathématique

, Volume 133, Issue 1, pp 183–228 | Cite as

Non-real zeros of derivatives of meromorphic functions

Article
  • 39 Downloads

Abstract

A number of results are proved concerning non-real zeros of derivatives of real and strictly non-real meromorphic functions in the plane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11 (1995), 355–373.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    W. Bergweiler and A. Eremenko, Proof of a conjecture of Pólya on the zeros of successive derivatives of real entire functions, Acta Math., 197 (2006), 145–166.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    W. Bergweiler, A. Eremenko, and J.K. Langley, Real entire functions of infinite order and a conjecture of Wiman, Geom. Funct. Anal., 13 (2003), 975–991.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    W. Bergweiler and J. K. Langley, Nonvanishing derivatives and normal families, J. Anal. Math., 91 (2003), 353–367.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    T. Craven, G. Csordas, and W. Smith, The zeros of derivatives of entire functions and the Pólya-Wiman conjecture, Ann. of Math. (2), 125 (1987), 405–431.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    A. Edrei and W. H. J. Fuchs, Bounds for the number of deficient values of certain classes of meromorphic functions, Proc. London Math. Soc. (3), 12 (1962), 315–344.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Edrei and W. H. J. Fuchs, On meromorphic functions with regions free of poles and zeros, Acta Math., 108 (1962), 113–145.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    G. Frank, Über die Nullstellen von linearen Differentialpolynomen mit meromorphen Koeffizienten, Complex Methods on Partial Differential Equations, Akademie-Verlag, Berlin, 1989, pp. 39–48.Google Scholar
  9. [9]
    G. Frank, W. Hennekemper, and G. Polloczek, Über die Nullstellen meromorpher Funktionen und deren Ableitungen, Math. Ann. 225 (1977), 145–154.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    G. Frank and G. Weissenborn, Rational deficient functions of meromorphic functions, Bull. London Math. Soc., 18 (1986), 29–33.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    G. Frank and G. Weissenborn, On the zeros of linear differential polynomials of meromorphic functions, Complex Variables Theory Appl., 12 (1989), 77–81.MathSciNetMATHGoogle Scholar
  12. [12]
    A. A. Gol’dberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Nauka, Moscow, 1970 (Russian); English transl., Amer. Math. Soc. Providence, RI, 2008.Google Scholar
  13. [13]
    G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2), 37 (1988), 88–104.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.MATHGoogle Scholar
  15. [15]
    W. K. Hayman, On the characteristic of functions meromorphic in the plane and of their integrals, Proc. London Math. Soc. (3), 14A (1965), 93–128.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull., 17 (1974), 317–358.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    W. K. Hayman, Subharmonic Functions Vol. 2, Academic Press, London, 1989.MATHGoogle Scholar
  18. [18]
    S. Hellerstein, L.-C. Shen, and J. Williamson, Reality of the zeros of an entire function and its derivatives, Trans. Amer.Math. Soc., 275 (1983), 319–331.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    S. Hellerstein, L.-C. Shen, and J. Williamson, Real zeros of derivatives of meromorphic functions and solutions of second order differential equations, Trans. Amer. Math. Soc., 285 (1984), 759–776.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    S. Hellerstein and J. Williamson, The zeros of the second derivative of the reciprocal of an entire function, Trans. Amer. Math. Soc., 263 (1981), 501–513.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, MA, 1969.MATHGoogle Scholar
  22. [22]
    E. Hille, Ordinary Differential Equations in the Complex Domain, Wiley, New York, 1976.MATHGoogle Scholar
  23. [23]
    A. Hinkkanen, Iteration and the zeros of the second derivative of a meromorphic function, Proc. London Math. Soc. (3), 65 (1992), 629–650.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A. Hinkkanen, Reality of zeros of derivatives of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22 (1997), 21–38.MathSciNetMATHGoogle Scholar
  25. [25]
    A. Hinkkanen, Zeros of derivatives of strictly non-real meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22 (1997), 39–74.MathSciNetMATHGoogle Scholar
  26. [26]
    A. Hinkkanen, Iteration, level sets, and zeros of derivatives of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 23 (1998), 317–388.MathSciNetMATHGoogle Scholar
  27. [27]
    A. Hinkkanen and J. F. Rossi, On a problem of Hellerstein, Shen and Williamson, Proc. Amer. Math. Soc., 92 (1984), 72–74.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    H. Ki and Y.-O. Kim, On the number of nonreal zeros of real entire functions and the Fourier-Pólya conjecture, Duke Math. J., 104 (2000), 45–73.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    J. K. Langley, Proof of a conjecture of Hayman concerning f and f″, J. London Math. Soc. (2), 48 (1993), 500–514.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    J. K. Langley, On second order linear differential polynomials, Results Math., 26 (1994), 51–82.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    J. K. Langley, The second derivative of a meromorphic function of finite order, Bull. London Math. Soc., 35 (2003), 97–108.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    J. K. Langley, Non-real zeros of higher derivatives of real entire functions of infinite order, J. Anal. Math., 97 (2005), 357–396.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    J. K. Langley, Non-real zeros of derivatives of real meromorphic functions, Proc. Amer. Math. Soc., 137 (2009), 3355–3367.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    J. K. Langley, Zeros of derivatives of meromorphic functions, Comput. Methods Funct. Theory, 10 (2010), 421–439.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    J. K. Langley, Non-real zeros of real differential polynomials, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 631–639.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    J. K. Langley, Zeros of derivatives of real meromorphic functions, Comput. Methods Funct. Theory, 12 (2012), 241–256.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    J. K. Langley, The reciprocal of a real entire function and non-real zeros of higher derivatives, Ann. Acad. Sci. Fenn. Math., 38 (2013), 855–871.MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    J. K. Langley, Derivatives of meromorphic functions of finite order, Comput. Methods Funct. Theory, 14 (2014), 195–207.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    B. Ja. Levin, Distribution of Zeros of Entire Functions, GITTL, Moscow, 1956; 2-nd English transl., Amer. Math. Soc., Providence, RI, 1980.MATHGoogle Scholar
  40. [40]
    B. Ja. Levin and I. V. Ostrovskii, The dependence of the growth of an entire function on the distribution of zeros of its derivatives, Sibirsk. Mat. Zh., 1 (1960) 427–455. English transl., AMS Transl. (2) 32 (1963), 323–357.MathSciNetGoogle Scholar
  41. [41]
    J. Lewis, J. Rossi, and A. Weitsman, On the growth of subharmonic functions along paths, Ark. Mat., 22 (1984), 109–119.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    P. Lounesto and S. Toppila, On a conjecture of Hellerstein, Shen and Williamson, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 40 (1986), 267–268.MathSciNetMATHGoogle Scholar
  43. [43]
    R. Nevanlinna, Eindeutige analytische Funktionen, 2te Aufl., Springer, Berlin, 1953.CrossRefMATHGoogle Scholar
  44. [44]
    D. A. Nicks, Real meromorphic functions and a result of Hinkkanen and Rossi, Illinois J. Math., 53 (2009), 605–622.MathSciNetMATHGoogle Scholar
  45. [45]
    C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992.CrossRefMATHGoogle Scholar
  46. [46]
    J. Rossi, The reciprocal of an entire function of infinite order and the distribution of the zeros of its second derivative, Trans. Amer. Math. Soc., 270 (1982), 667–683.MathSciNetMATHGoogle Scholar
  47. [47]
    W. Schwick, Normality criteria for families of meromorphic functions, J. Anal. Math., 52 (1989), 241–289.MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    T. Sheil-Small, On the zeros of the derivatives of real entire functions and Wiman’s conjecture, Ann. of Math. (2), 129 (1989) 179–193.MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    L. C. Shen, Construction of a differential equation y″ + Ay = 0 with solutions having prescribed zeros, Proc. Amer. Math. Soc., 95 (1985), 544–546.MathSciNetMATHGoogle Scholar
  50. [50]
    N. Steinmetz, On the zeros of a certain Wronskian, Bull. London Math. Soc., 20 (1988), 525–531.MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    N. Steinmetz, Rational Iteration, Walter de Gruyter, Berlin, 1993.CrossRefMATHGoogle Scholar
  52. [52]
    M. Tsuji, On Borel’s directions of meromorphic functions of finite order, I, Tôhoku Math. J., 2 (1950), 97–112.MathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.MATHGoogle Scholar
  54. [54]
    G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea, New York, 1949.Google Scholar
  55. [55]
    L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. (N.S), 35 (1998), 215–230.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamEngland

Personalised recommendations