Advertisement

Journal d'Analyse Mathématique

, Volume 133, Issue 1, pp 71–89 | Cite as

Local Tb theorem with L 2 testing conditions and general measures: square functions

  • Michael T. Lacey
  • Henri Martikainen
Article
  • 43 Downloads

Abstract

Local Tb theorems with L p type testing conditions, which are not scale invariant, have been studied widely in the case of the Lebesgue measure. In the non-homogeneous world local Tb theorems have only been proved assuming scale invariant (L or BMO) testing conditions. In this paper, for the first time, we overcome these obstacles in the non-homogeneous world, and prove a nonhomogeneous local Tb theorem with L 2 type testing conditions. This paper is in the setting of the vertical and conical square functions defined using general measures and kernels. On the technique side, we demonstrate a trick of inserting Calderón–Zygmund stopping data of a fixed function into the construction of the twisted martingale difference operators. This built-in control of averages is an alternative to Carleson embedding.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Auscher, S. Hofmann, C. Muscalu, T. Tao, and C. Theile, Carleson measures, trees, extrapolation, and T (b) theorems, Pub;. Mat., 46 (2002), 257–325.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    P. Auscher and E. Routin, Local Tb theorems and Hardy inequalities, J. Geom. Anal., 23 (2013), 303–374.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    P. Auscher and Q.-X. Yang, BCR algorithm and the T (b) theorem, Publ. Mat. 53 (2009), 179–196.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    S. Hofmann, A proof of the local Tb Theorem for standard Calderón-Zygmund operators, arXiv:0705.0840[math.CA].Google Scholar
  6. [6]
    S. Hofmann, A local Tb theorem for square functions, Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Amer. Math. Soc., Providence, RI, 2008, pp. 175–185.CrossRefGoogle Scholar
  7. [7]
    T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. (2), 175 (2012), 1473–1506.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    T. Hytönen and H. Martikainen, On general local Tb theorems, Trans. Amer. Math. Soc., 364 (2012), 4819–4846.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    T. Hytönen and F. Nazarov, The local Tb theorem with rough test functions, arXiv:1206.0907[math.CA].Google Scholar
  10. [10]
    M. Lacey, The two weight inequality for the Hilbert transform: A primer, Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2), Springer, 2017, pp. 11–84.CrossRefGoogle Scholar
  11. [11]
    M. Lacey and H. Martikainen, Local Tb theorem with L 2 testing conditions and general measures: Calderón-Zygmund operators, Ann. Sci. Éc. Norm. Supér. (4), 49(2016), 57–86.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    M. Lacey, I. Uriarte-Tuero, and C-Y. Shen, Two weight inequality for the Hilbert transform: A real variable characterization, I, Duke Math. J., 163 (2014), 2795–2820.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    M. Lacey and A. Vähäkangas, The perfect local Tb theorem and twisted martingale transforms, Proc. Amer. Math. Soc., 142 (2014), 1689–1700.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    M. Lacey and A. Vähäkangas, On the local Tb theorem: A direct proof under the duality assumption, Proc. Edinb. Math. Soc. (2), 59 (2016), 193–222.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Lacey and A. Vähäkangas, Non-homogeneous local T 1 theorem: dual exponents, Some Topics in Harmonic Analysis and Applications, Int. Press, Somerville, MA, 2016, pp. 231–264.MATHGoogle Scholar
  16. [16]
    H. Martikainen and M. Mourgoglou, Square functions with general measures, Proc. Amer. Math. Soc., 142 (2014), 3923–3931.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    H. Martikainen, M. Mourgoglou, and T. Orponen, Square functions with general measures II, Indiana Univ. Math. J. 63 (2014), 1249–1279.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    F. Nazarov, S. Treil, and A. Volberg, Accretive system Tb-theorems on nonhomogeneous spaces, Duke Math. J., 113 (2002), 259–312.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2017

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations