A. D. Baranov and K. Yu. Fedorovskiy, Boundary regularity of Nevanlinna domains and univalent functions in model subspaces, Sb. Math. 202 (2011), 1723–1748.
MathSciNet
Article
MATH
Google Scholar
A. D. Baranov and H. Hedenmalm, Boundary properties of Green functions in the plane, Duke Math. J. 145 (2008), 1–24.
MathSciNet
Article
MATH
Google Scholar
D. Beliaev and S. Smirnov, Harmonic measure on fractal sets, Proceedings of the 4th European Congress of Mathematics European Mathematical Society, Zürich, 2005, pp. 41–59.
MATH
Google Scholar
L. Carleson and P. W. Jones, On coefficient problems for univalent functions and conformal dimension, Duke Math. J. 66 (1992), 169–206.
MathSciNet
Article
MATH
Google Scholar
J. J. Carmona, Mergelyan’s approximation theorem for rational modules, J. Approx. Theory 44 (1985), 113–126.
MathSciNet
Article
MATH
Google Scholar
J. J. Carmona, P. V. Paramonov, and K. Yu. Fedorovskiy, Uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions, Sb. Math. 193 (2002), 1469–1492.
MathSciNet
Article
MATH
Google Scholar
P. J. Davis, The Schwarz Function and its Applications, Math. Assoc. America, Buffalo, NY, 1974.
MATH
Google Scholar
E. P. Dolzhenko, Some exact integral estimates of the derivatives of rational and algebraic functions. Applications, Anal. Math. 4 (1978), 247–268.
MathSciNet
Article
MATH
Google Scholar
P. L. Duren, Theory of Hp spaces, Academic Press, New York, 1970.
MATH
Google Scholar
E. Dyn’kin, Rational functions in Bergman spaces, Complex Analysis, Operators, and Related Topics, Birkhäuser, Basel, 2000, pp. 77–94.
Book
MATH
Google Scholar
K. Yu. Fedorovskiy, On uniform approximations of functions by n-analytic polynomials on rectifiable contours in C, Math. Notes 59 (1996), 435–439.
MathSciNet
Article
Google Scholar
K. Yu. Fedorovskiy, Approximation and boundary properties of polyanalytic functions, Proc. Steklov Inst. Math. 235 (2001), 251–260.
MathSciNet
Google Scholar
K. Yu. Fedorovskiy, On some properties and examples of Nevanlinna domains, Proc. Steklov Inst. Math. 253 (2006), 186–194.
MathSciNet
Article
Google Scholar
J. B. Garnett and D. Marshall, Harmonic Measure, Cambridge University Press, Cambridge, 2005.
Book
MATH
Google Scholar
B. Gustafsson and H. S. Shapiro, What is a quadrature domain? Quadrature Domains and Their Application, Birkhäuser, Basel, 2005, pp. 1–25.
Book
MATH
Google Scholar
H. Hedenmalm and S. Shimorin, Weighted Bergman spaces and the integral means spectrum of conformal mappings, Duke Math. J. 127 (2005), 341–393.
MathSciNet
Article
MATH
Google Scholar
H. Hedenmalm and S. Shimorin, On the unversal integral means spectrum of conformal mappings near the origin, Proc. Amer. Math. Soc. 135 (2007), 2249–2255.
MathSciNet
Article
MATH
Google Scholar
I. R. Kayumov, On an inequality for the universal spectrum of integral means, Math. Notes 84 (2008), 137–141.
MathSciNet
Article
MATH
Google Scholar
M. Ya. Mazalov, Example of a nonrectifiable Nevanlinna contour, St. Petersburg Math. J. 27 (2016), 625–630.
Article
MATH
Google Scholar
M. Ya. Mazalov, P. V. Paramonov, and K. Yu. Fedorovskiy, Conditions for the Cm-approximability of functions by solutions of elliptic equations, Russian Math. Surveys 67 (2012), 1023–1068.
MathSciNet
Article
MATH
Google Scholar
N. K. Nikolski, Treatise on the Shift Operator, Springer-Verlag, Berlin–Heidelberg, 1986.
Book
Google Scholar
N. K. Nikolski, Sublinear dimension growth in the Kreiss Matrix Theorem, Algebra i Analiz 25 (2013), 3–51.
MathSciNet
Google Scholar
A. G. O’Farrell, Annihilators of rational modules, J. Funct. Anal. 19 (1975), 373–389.
MathSciNet
Article
MATH
Google Scholar
Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
Book
MATH
Google Scholar
A. Sola, An estimate of the universal means spectrum of conformal mappings, Comput. Methods Funct. Theory 6 (2006), 423–436.
MathSciNet
Article
MATH
Google Scholar
M. N. Spijker, On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem, BIT 31 (1991), 551–555.
MathSciNet
Article
MATH
Google Scholar
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.
MATH
Google Scholar
S. Tabachnikov, Geometry and Billiards, American Mathematical Society, Providence, RI, 2005.
Book
MATH
Google Scholar
T. Trent and J. L.-M. Wang, Uniform approximation by rational modules on nowhere dense sets, Proc. Amer. Math. Soc. 81 (1981), 62–64.
MathSciNet
Article
MATH
Google Scholar