Skip to main content
Log in

On L 1-estimates of derivatives of univalent rational functions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the growth of the quantity ∫T|R′(z)|dm(z) for rational functions R of degree n which are bounded and univalent in the unit disk and prove that this quantity can grow like n γ, γ > 0, as n → ∞. Some applications of this result to problems of regularity of boundaries of Nevanlinna domains are considered. We also discuss a related result of Dolzhenko, which applies to general (non-univalent) rational functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Baranov and K. Yu. Fedorovskiy, Boundary regularity of Nevanlinna domains and univalent functions in model subspaces, Sb. Math. 202 (2011), 1723–1748.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. D. Baranov and H. Hedenmalm, Boundary properties of Green functions in the plane, Duke Math. J. 145 (2008), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Beliaev and S. Smirnov, Harmonic measure on fractal sets, Proceedings of the 4th European Congress of Mathematics European Mathematical Society, Zürich, 2005, pp. 41–59.

    MATH  Google Scholar 

  4. L. Carleson and P. W. Jones, On coefficient problems for univalent functions and conformal dimension, Duke Math. J. 66 (1992), 169–206.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. J. Carmona, Mergelyan’s approximation theorem for rational modules, J. Approx. Theory 44 (1985), 113–126.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. J. Carmona, P. V. Paramonov, and K. Yu. Fedorovskiy, Uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions, Sb. Math. 193 (2002), 1469–1492.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. J. Davis, The Schwarz Function and its Applications, Math. Assoc. America, Buffalo, NY, 1974.

    MATH  Google Scholar 

  8. E. P. Dolzhenko, Some exact integral estimates of the derivatives of rational and algebraic functions. Applications, Anal. Math. 4 (1978), 247–268.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. L. Duren, Theory of Hp spaces, Academic Press, New York, 1970.

    MATH  Google Scholar 

  10. E. Dyn’kin, Rational functions in Bergman spaces, Complex Analysis, Operators, and Related Topics, Birkhäuser, Basel, 2000, pp. 77–94.

    Book  MATH  Google Scholar 

  11. K. Yu. Fedorovskiy, On uniform approximations of functions by n-analytic polynomials on rectifiable contours in C, Math. Notes 59 (1996), 435–439.

    Article  MathSciNet  Google Scholar 

  12. K. Yu. Fedorovskiy, Approximation and boundary properties of polyanalytic functions, Proc. Steklov Inst. Math. 235 (2001), 251–260.

    MathSciNet  Google Scholar 

  13. K. Yu. Fedorovskiy, On some properties and examples of Nevanlinna domains, Proc. Steklov Inst. Math. 253 (2006), 186–194.

    Article  MathSciNet  Google Scholar 

  14. J. B. Garnett and D. Marshall, Harmonic Measure, Cambridge University Press, Cambridge, 2005.

    Book  MATH  Google Scholar 

  15. B. Gustafsson and H. S. Shapiro, What is a quadrature domain? Quadrature Domains and Their Application, Birkhäuser, Basel, 2005, pp. 1–25.

    Book  MATH  Google Scholar 

  16. H. Hedenmalm and S. Shimorin, Weighted Bergman spaces and the integral means spectrum of conformal mappings, Duke Math. J. 127 (2005), 341–393.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Hedenmalm and S. Shimorin, On the unversal integral means spectrum of conformal mappings near the origin, Proc. Amer. Math. Soc. 135 (2007), 2249–2255.

    Article  MathSciNet  MATH  Google Scholar 

  18. I. R. Kayumov, On an inequality for the universal spectrum of integral means, Math. Notes 84 (2008), 137–141.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Ya. Mazalov, Example of a nonrectifiable Nevanlinna contour, St. Petersburg Math. J. 27 (2016), 625–630.

    Article  MATH  Google Scholar 

  20. M. Ya. Mazalov, P. V. Paramonov, and K. Yu. Fedorovskiy, Conditions for the Cm-approximability of functions by solutions of elliptic equations, Russian Math. Surveys 67 (2012), 1023–1068.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. K. Nikolski, Treatise on the Shift Operator, Springer-Verlag, Berlin–Heidelberg, 1986.

    Book  Google Scholar 

  22. N. K. Nikolski, Sublinear dimension growth in the Kreiss Matrix Theorem, Algebra i Analiz 25 (2013), 3–51.

    MathSciNet  Google Scholar 

  23. A. G. O’Farrell, Annihilators of rational modules, J. Funct. Anal. 19 (1975), 373–389.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.

    Book  MATH  Google Scholar 

  25. A. Sola, An estimate of the universal means spectrum of conformal mappings, Comput. Methods Funct. Theory 6 (2006), 423–436.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. N. Spijker, On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem, BIT 31 (1991), 551–555.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  28. S. Tabachnikov, Geometry and Billiards, American Mathematical Society, Providence, RI, 2005.

    Book  MATH  Google Scholar 

  29. T. Trent and J. L.-M. Wang, Uniform approximation by rational modules on nowhere dense sets, Proc. Amer. Math. Soc. 81 (1981), 62–64.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Yu. Fedorovskiy.

Additional information

This research was partially supported by the Russian Foundation for Basic Research, grants 15-01-07531 and 16-01-00674, by the Ministry of Education and Science of the Russian Federation, projects 1.3843.2017 and 1.517.2016, and by Dmitry Zimin’s “Dynasty” Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, A.D., Fedorovskiy, K.Y. On L 1-estimates of derivatives of univalent rational functions. JAMA 132, 63–80 (2017). https://doi.org/10.1007/s11854-017-0010-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-017-0010-y

Navigation