Skip to main content
Log in

Weyl composition of symbols in large dimension

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This paper is concerned with the Weyl composition of symbols in large dimension. We specify a class of symbols in order to estimate the Weyl symbol of the product of two Weyl h-pseudodifferential operators, with constants independent of the dimension. The proof includes regularized and hybrid compositions, together with a decomposition formula. We also analyze, in this context, the remainder term of the semiclassical expansion of the Weyl composition. The class of symbols contains symbols of Schrödinger semigroups in large dimension, typically for nearest neighbors or mean field interaction potentials. The Weyl composition is applied with Kac operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Amour, L. Jager, and J. Nourrigat, Bounded Weyl pseudodifferential operators in Fock space arXiv: 1209.2852[math. FA].

  2. L. Amour, L. Jager, and J. Nourrigat, On bounded pseudodifferential operators in a highdimensional setting, Proc. Amer. Math. Soc. 143 (2015), 2057–2068.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Amour, L. Jager, and J. Nourrigat, The Weyl symbol of Schrödinger semigroups, Ann. Henri Poincaré 16 (2015), 1479–1488.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. A. Berezin, Quantization, Izv. Akad. Nauk SSSR, Ser. Mat. 38 (1974), 1116–1175.

    MathSciNet  Google Scholar 

  5. G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc. 348 (1996), 503–520.

  6. G. B. Folland, Harmonic Analysis in Phase Space, Princeton, NJ, 1989.

    Book  MATH  Google Scholar 

  7. B. Helffer, Estimations sur les fonctions de correlation pour des modèles du type de Kac, Séminaire sur les Equations aux Dérivées Partielles, 1992–1993, Exp. No. XII, Ecole Polytech., Palaiseau, 1993.

    Google Scholar 

  8. B. Helffer, Universal estimate of the gap for the Kac operator in the convex case, Comm. Math. Phys. 161 (1994), 631–643.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Helffer, Spectral properties of the Kac operator in large dimension, Mathematical Quantum Theory. II. Schrödinger Operators, Amer. Math. Soc., Providence, RI, 1995, pp. 179–211.

    MATH  Google Scholar 

  10. B. Helffer and Th. Ramond, Semiclassical expansion for the thermodynamic limit of the ground state energy of Kac’s operator, Journées “Equations aux Dérivées Partielles”, Exp. No. XIII, Univ. Nantes, Nantes, 2000.

    MATH  Google Scholar 

  11. B. Helffer and Th. Ramond, Semiclassical expansion for the thermodynamic limit of the ground state energy of Kac’s operator, in Long Time Behaviour of Classical and Quantum Systems, World Sci. Publ., River Edge, NJ, 2001, pp. 140–170.

    Chapter  Google Scholar 

  12. B. Helffer and J. Sjöstrand, On the correlation for Kac-like models in the convex case, J. Statist. Phys. 74 (1994), 349–409.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudodifferential Operators, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  14. B. Lascar, Noyaux d’une classe d’opérateurs pseudo-différentiels sur l’espace de Fock, et applications, Séminaire Paul Krée, 3e année (1976-77), Équations aux Dérivées Partielles en dimension infinie, Exp. No. 6, Springer, Berlin, 1978.

    MATH  Google Scholar 

  15. B. Lascar, Une classe d’opérateurs elliptiques du second ordre sur un espace de Hilbert, J. Funct. Anal. 35 (1980), 316–343.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Lascar, Opérateurs pseudo-différentiels en dimension infinie. Applications. C. R. Acad. Sci. Paris Sér. A–B 284 (1977), A767–A769

    MathSciNet  MATH  Google Scholar 

  17. B. Lascar, Opérateurs pseudo-différentiels d’une infinité de variables, d’après M. I. Visik, Séminaire Pierre Lelong (Analyse). Année 1973-1974, Springer-Verlag, Berlin-New York, 1975, pp. 83-90.

    MATH  Google Scholar 

  18. N. Lerner, Metrics on the Phase Space and Non-Selfadjoint Pseudo-differential Operators, Birkhäuser Verlag, Basel, 2010.

    Book  MATH  Google Scholar 

  19. A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer-Verlag, New York, 2002.

    Book  MATH  Google Scholar 

  20. D. Robert, Autour de l’approximation semi-classique, Birkhäuser Boston, Inc., Boston, MA, 1987.

    MATH  Google Scholar 

  21. M. A. Shubin, Pseudodifferential Operators and Spectral Theory, second edition, Springer-Verlag, Berlin, 2001.

    Book  MATH  Google Scholar 

  22. A. Unterberger, Les opérateurs métadifférentiels, in Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Springer, Berlin-New York, 1980, pp. 205–241.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Amour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amour, L., Nourrigat, J. Weyl composition of symbols in large dimension. JAMA 130, 375–392 (2016). https://doi.org/10.1007/s11854-016-0041-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-016-0041-9

Navigation