Journal d'Analyse Mathématique

, Volume 130, Issue 1, pp 151–166 | Cite as

Estimates of 1D resonances in terms of potentials

Article

Abstract

We discuss resonances for Schrödinger operators with compactly supported potentials on the line and the half-line. We estimate the sum of the negative power of all resonances and eigenvalues in terms of the norm of the potential and the diameter of its support. The proof is based on harmonic analysis and Carleson measures arguments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Brown, I. Knowles, and R. Weikard, On the inverse resonance problem, J. London Math. Soc. (2) 68 (2003), 383–401.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    L. Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    P. Deift and E. Trubowitz, Inverse scattering on the line, Commun. Pure Appl. Math. 32 (1979), 121–251.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. Dolbeault, P. Felmer, M. Loss, and E. Paturel, Lieb-Thirring type inequalities and Gagliardo- Nirenberg inequalities for systems, J. Funct. Anal. 238 (2006), 193–220.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.MATHGoogle Scholar
  7. [7]
    R. Froese, Asymptotic distribution of resonances in one dimension, J. Differential Equations 137 (1997), 251–272.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. Garnett, Bounded Analytic Functions, Academic Press, New York-London, 1981.MATHGoogle Scholar
  9. [9]
    S. Golden, Lower bounds for the Helmholtz function, Phys. Rev. (2) 137 (1965), B1127–B1128.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    M. Hitrik, Bounds on scattering poles in one dimension, Comm. Math. Phys. 208 (1999), 381–411.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    V. A. Javrjan, Some perturbations of self-adjoint operators, Akad. Nauk Armjan. SSR Dokl. 38 (1964), 3–7.MathSciNetGoogle Scholar
  12. [12]
    R. Jost and A. Pais, On the scattering of a particle by a static potential, Phys. Rev. 82 (1951), 840–851.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    P. Koosis, The Logarithmic Integral I, Cambridge Univ. Press, Cambridge, 1988.Google Scholar
  14. [14]
    E. Korotyaev, Inverse resonance scattering on the half line, Asymptot. Anal. 37 (2004), 215–226.MathSciNetMATHGoogle Scholar
  15. [15]
    E. Korotyaev, Stability for inverse resonance problem, Int. Math. Res. Not. 2004, no. 73, 3927–3936.Google Scholar
  16. [16]
    E. Korotyaev, Inverse resonance scattering on the real line, Inverse Problems 21 (2005), 325–341.Google Scholar
  17. [17]
    E. Korotyaev, Resonance theory for perturbed Hill operator, Asymptot. Anal. 74 (2011), 199–227.MathSciNetMATHGoogle Scholar
  18. [18]
    B. Ya. Levin, Lectures on Entire Functions, American Mathematical Society, Providence, RI, 1996.Google Scholar
  19. [19]
    E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics, Princeton University Press, Princeton, NJ, 1976, pp. 269–303.Google Scholar
  20. [20]
    M. Loss, Private communication.Google Scholar
  21. [21]
    V. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser Verlag, Basel, 1986.CrossRefMATHGoogle Scholar
  22. [22]
    M. Marletta, R. Shterenberg, and R. Weikard, On the inverse resonance problem for Schrödinger operators, Comm. Math. Phys. 295 (2010), 465–484.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    A. Melin, Operator methods for inverse scattering on the real line, Comm. Partial Differential Equations 10 (1985), 677–766.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    R. Melrose, Polynomial bound on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    B. Simon, Resonances in one dimension and Fredholm determinants, J. Funct. Anal. 178 (2000), 396–420.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729–769.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    C. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys. 6 (1965), 1812–1813.MathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), 277–296.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), 370–403.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    M. Zworski, A remark on isopolar potentials, SIAM, J. Math. Anal. 82 (2002), 1823–1826.MathSciNetGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2016

Authors and Affiliations

  1. 1.Saint-Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations