Skip to main content
Log in

Existence and symmetry for elliptic equations in ℝn with arbitrary growth in the gradient

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the semilinear elliptic equation Δu + g(x, u, Du) = 0 in ℝn. The nonlinearities g can have arbitrary growth in u and Du, including, in particular, exponential behavior. No restriction is imposed on the behavior of g(x, z, p) at infinity except in the variable x. We obtain a solution u which is locally unique and inherits many of the symmetry properties of g. Positivity and asymptotic behavior of the solution are also addressed. Our results can be extended to other domains, such as the half-space and exterior domains. Finally, we give some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alarcón, J. García-Melián, and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms, J. Differential Equations 252 (2012), 886–914.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Alarcón, J. García-Melián, and A. Quaas, Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity, J. Anal. Math. 118 (2012), 83–104.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Amann, Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z. 150 (1976), 281–295.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Amann and M. Crandall, On some existence theorems for semilinear equations, Indiana Univ. Math. J. 27 (1978), 779–790.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Baraket and F. Pacard, Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1998), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Boccardo, F. Murat, and J. P. Puel, Résultats d’existence pour certains problèmes elliptiques quasilinéaires. Ann. Scuola Norm. Sup. Pisa (4) 11 (1984), 213–235.

    MathSciNet  MATH  Google Scholar 

  7. L. Caffarelli and Y. S. Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys. 168 (1995), 321–336.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Chae and O. Y. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000), 119–142.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover, New York, 1957.

    MATH  Google Scholar 

  10. S. Y. A. Chang, M. Gursky, and P. C. Yang, The scalar curvature equation on 2- and 3-spheres, Calc. Var. Partial Differential Equations 1 (1993), 205–229.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Y. A. Chang and P. C. Yang, Conformal deformation of metrics on S2, J. Differential Geom. 27 (1988), 259–296.

    MathSciNet  Google Scholar 

  12. Y. Choquet-Bruhat and J. Leray, Sur le problème de Dirichlet, quasilinéaire, d’ordre 2, C. R. Acad. Sci. Paris Ser. A-B 274 (1972), 81–85.

    MathSciNet  MATH  Google Scholar 

  13. M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 3 (1975), 207–218.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. del Pino, M. Kowalczyk, and M. Musso, Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations 24 (2005), 47–81.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Dupaigne, M. Ghergu, and V. Radulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. (9) 87 (2007), 563581.

    MathSciNet  MATH  Google Scholar 

  16. P. Esposito, M. Grossi, and A. Pistoia, On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 227–257.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Felmer, A. Quaas, and B. Sirakov, Solvability of nonlinear elliptic equations with gradient terms, J. Differential Equations 254 (2013), 4327–4346.

  18. L. C. F. Ferreira and M. Montenegro, Existence and asymptotic behavior for elliptic equations with singular anisotropic potentials, J. Differential Equations 250 (2011), 2045–2063.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. (2) 29 (1963), 295–381.

    Article  MathSciNet  Google Scholar 

  20. D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269.

    MathSciNet  MATH  Google Scholar 

  21. J. L. Kazdan and R. J. Kramer, Invariant criteria for existence of solutions to second-order quasilinear equations, Comm. Pure Appl. Math. 31 (1978), 619–645.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. L. Kazdan and F. W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. (2) 101 (1975), 317–331.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567–597.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. M. Lasry and P. L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem, Math. Ann. 283 (1989), 583–630.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Lieb and M. Loss, Analysis, second edition, American Mathematical Society, Providence, RI, 2001.

    Book  MATH  Google Scholar 

  26. F. Mignot and J. P. Puel, Sur une classe de problèmes non linéaires avec non linéairité—positive, croissante, convexe, Comm. Partial Differential Equations 5 (1980), 791–836.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Quittner and D. Zubrinic, On the unique solvability of nonresonant elliptic equations, Comment. Math. Univ. Carolin. 27 (1986), 301–306.

    MathSciNet  MATH  Google Scholar 

  28. P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math. 3 (1973), 161–202.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Ruiz and A. Suárez, Existence and uniqueness of positive solution of a logistic equation with nonlinear gradient term, Proc. Roy. Soc. Edinburgh Sect. A (3) 137 (2007), 555–566.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 109–121.

    MathSciNet  MATH  Google Scholar 

  31. G. Tarantello, Analytical aspects of Liouville-type equations with singular sources, Stationary Partial Differential Equations. Vol. I, North-Holland, Amsterdam, 2004, pp. 491–592.

    MATH  Google Scholar 

  32. J. Wei, D. Ye, and F. Zhou, Bubbling solutions for an anisotropic Emden-Fowler equation, Calc. Var. Partial Differential Equations 28 (2007), 217–247.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Yang, Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space, J. Funct. Anal. 262 (2012), 1679–1704.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas C. F. Ferreira.

Additional information

L. C. F. Ferreira, M. Montenegro, and M. C. Santos were partially supported by CNPq/Brazil and Capes/Brazil.

Part of this work was developed while M. Montenegro was visiting IHP and IHÉS under CARMIN program and École Polytechnique, CMLS, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, L.C.F., Montenegro, M. & Santos, M.C. Existence and symmetry for elliptic equations in ℝn with arbitrary growth in the gradient. JAMA 130, 1–18 (2016). https://doi.org/10.1007/s11854-016-0027-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-016-0027-7

Navigation