Skip to main content
Log in

Spectral (isotropic) manifolds and their dimension

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

A set of n × n symmetric matrices whose ordered vector of eigenvalues belongs to a fixed set in ℝn is called spectral or isotropic. In this paper, we establish that every locally symmetric C k submanifoldMof ℝn gives rise to a C k spectral manifold for k ∈ {2, 3, …,∞,ω}. An explicit formula for the dimension of the spectral manifold in terms of the dimension and the intrinsic properties of M is derived. This work builds upon the results of Sylvester and Šilhavý and uses characteristic properties of locally symmetric submanifolds established in recent works by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ball, Differentiability properties of symmetric and isotropic functions, Duke Math. J. 51 (1984), 699–728.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000.

    Book  MATH  Google Scholar 

  3. J. Dadok, On the C Chevalley’s theorem, Adv. Math. 44 (1982), 121–131.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Daniilidis, D. Drusvyatskiy, and A. S. Lewis, Orthogonal invariance and identifiability, SIAM J. Matrix Anal. Appl. 35 (2014), 580–698.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Daniilidis, A. S. Lewis, J. Malick, and H. Sendov, Prox-regularity of spectral functions and spectral sets, J. Convex Anal. 15 (2008), 547–560.

    MathSciNet  MATH  Google Scholar 

  6. A. Daniilidis, A. S. Lewis, J. Malick, and H. Sendov, Locally symmetric submanifolds lift to spectral manifolds, arxiv:1212.3936[math.OC].

  7. A. Daniilidis, J. Malick, and H. Sendov, On the structure of locally symmetric manifolds, J. Convex Anal. 22 (2015), 399–426.

    MathSciNet  MATH  Google Scholar 

  8. M. P. Do Carmo, Riemannian Geometry, Birkhäuser, Boston, Inc., Boston, MA, 1992.

    Book  MATH  Google Scholar 

  9. U. Helmke and J. B. Moore, Optimization and Dynamical Systems, second edition, Springer, New York, 1996.

    MATH  Google Scholar 

  10. J. B. Hiriart-Urruty and D. Ye, Sensitivity analysis of all eigenvalues of a symmetric matrix, Numer. Math. 70 (1992), 45–72.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1976.

    Book  Google Scholar 

  12. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, John Wiley & Sons, New York-London, 1963.

    MATH  Google Scholar 

  13. A. S. Lewis, Derivatives of spectral functions, Math. Oper. Res. 21 (1996), 576–588.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. S. Lewis, Nonsmooth analysis of eigenvalues, Math. Program. 84 (1999), 1–24.

    MathSciNet  MATH  Google Scholar 

  15. A. S. Lewis and H. Sendov, Twice differentiable spectral functions, SIAM J. Matrix Anal. Appl. 23 (2001), 368–386.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Orsi, U. Helmke, and J. B. Moore, A Newton-like method for solving rank constrained linear matrix inequalities, Automatica J. IFAC 42 (2006), 1875–1882.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis, Trans.Amer. Math. Soc. 348 (1996) 1805–1838.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Sendov, The higher-order derivatives of spectral functions, Linear Algebra Appl. 424 (2007), 240–281.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Silhavý, Differentiability properties of isotropic functions, Duke Math. J. 104 (2000), 367–373.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Sylvester, On the differentiability of O(n) invariant functions of symmetric matrices, Duke Math. J. 52 (1985), 475–483.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. A. Tropp, I. S. Dhillon, R. W. Heath, and T. Strohmer, Designing structured tight frames via an alternating projection method, IEEE Trans. Inform. Theory 51 (2005), 188–209.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. K. Tsing, M. K. W. Fan, and E. I. Verriest, On analyticity of functions involving eigenvalues, Linear Algebra Appl. 207 (1994), 159–180.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aris Daniilidis.

Additional information

Research supported by the grant MTM2014-59179-C2-1-P (MINECO of Spain and FEDER of EU), by the BASAL Project PFB-03, and by the FONDECYT Regular grant No 1130176 (Chile).

Research supported by the NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniilidis, A., Malick, J. & Sendov, H. Spectral (isotropic) manifolds and their dimension. JAMA 128, 369–397 (2016). https://doi.org/10.1007/s11854-016-0013-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-016-0013-0

Keywords

Navigation