Skip to main content
Log in

Removable sets for homogeneous linear partial differential equations in Carnot groups

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let L be a homogeneous left-invariant differential operator on a Carnot group. Assume that both L and L t are hypoelliptic. We study the removable sets for L-solutions. We give precise conditions in terms of the Carnot- Caratheodory Hausdorff dimension for the removability for L-solutions under several auxiliary integrability or regularity hypotheses. In some cases, our criteria are sharp on the level of the relevant Hausdorff measure. One of the main ingredients in our proof is the use of novel local self-similar tilings in Carnot groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin, 1996.

    Book  MATH  Google Scholar 

  2. D. R. Adams and J. C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc. 37 (1973), 529–534.

    Article  MathSciNet  MATH  Google Scholar 

  3. Z.M. Balogh, R. Hoefer-Isenegger, and J. T. Tyson, Lifts of Lipschitz maps and horizontal fractals in the Heisenberg group, Ergodic Theory Dynam. Systems 26 (2006), 621–651.

    Article  MathSciNet  MATH  Google Scholar 

  4. Z. M. Balogh and H. Rohner, Self-similar sets in doubling spaces, Illinois J. Math. 51 (2007), 1275–1297.

    MathSciNet  MATH  Google Scholar 

  5. Z. M. Balogh, J. T. Tyson, and B. Warhurst, Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups, Adv. Math. 220 (2009), 560–619.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Björn, Removable singularities for analytic functions in BMO and locally Lipschitz spaces, Math. Z. 244 (2003), 805–835.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Björn, Removable singularities for bounded p-harmonic and quasi(super)harmonic functions on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 71–95.

    MathSciNet  MATH  Google Scholar 

  8. A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, European Mathematical Society (EMS), Zürich, 2011.

    Book  MATH  Google Scholar 

  9. A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer, Berlin, 2007.

    MATH  Google Scholar 

  10. L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser Verlag, Basel, 2007.

    MATH  Google Scholar 

  11. L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393–399.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Carleson, Removable singularities of continuous harmonic functions in Rm, Math. Scand. 12 (1963), 15–18.

    MathSciNet  MATH  Google Scholar 

  13. L. Carleson, Selected Problems on Exceptional Sets, D. Van Nostrand Co., Inc., Princeton, NJToronto, Ont.-London, 1967.

    MATH  Google Scholar 

  14. J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428–517.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Chousionis, V. Magnani, and J. T. Tyson,, Removable sets for Lipschitz harmonic functions on Carnot groups, Calc. Var. Partial Differential Equations 53 (2015), 755–780.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Chousionis and P. Mattila, Singular integrals on self-similar sets and removability for Lipschitz harmonic functions in Heisenberg groups, J. Reine Angew. Math. 691 (2014), 29–60.

    MathSciNet  MATH  Google Scholar 

  17. M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601–628.

    MathSciNet  MATH  Google Scholar 

  18. G. David, Unrectifiable 1-sets have vanishing analytic capacity, Rev. Mat. Iberoamer. 14 (1998), 369–479.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. David and P. Mattila, Removable sets for Lipschitz harmonic functions in the plane, Rev. Mat. Iberoamer. 16 (2000), 137–215.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986.

    MATH  Google Scholar 

  21. G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373–376.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161–207.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, NJ, 1982.

    MATH  Google Scholar 

  24. D. Geller, Liouvilleś theorem for homogeneous groups, Comm. Partial Differential Equations 8 (1983), 1665–1677.

    MathSciNet  MATH  Google Scholar 

  25. R. Harvey and J. C. Polking, Removable singularities of solutions of linear partial differential equations, Acta Math. 125 (1970), 39–56.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Harvey and J. C. Polking, A notion of capacity which characterizes removable singularities, Trans. Amer. Math. Soc. 169 (1972), 183–195.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. P. Kaufman, Hausdorff measure, BMO, and analytic functions, Pacific J. Math. 102 (1982), 369–371.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Koskela, Removable singularities for analytic functions, Michigan Math. J. 40 (1993), 459–466.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Král, Removable singularities of solutions of semielliptic equations, Rend. Mat. (6) 6 (1973), 763–783.

    MathSciNet  MATH  Google Scholar 

  30. J. Král, Singularités non essentielles des solutions des équations aux dérivées partielles, Séminaire de Théorie du Potentiel, Springer, Berlin, 1976, pp. 95–106.

    Google Scholar 

  31. J. Král, Singularities of solutions of partial differential equations.(Russian), Imbedding Theorems and their Applications to Problems of Mathematical Physics, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1983, pp. 78–89.

    Google Scholar 

  32. J. Král, Semielliptic singularities, Časopis Pěst. Mat. 109 (1984), 304–466.

    MathSciNet  MATH  Google Scholar 

  33. T. Mäkäläinen, Removable sets for Hölder continuous p-harmonic functions on metric measure spaces, Ann. Acad. Sci. Fenn. Math. 33 (2008), 605–624.

    MathSciNet  MATH  Google Scholar 

  34. P. Matilla, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995.

    Book  Google Scholar 

  35. R. Montgomery, A Tour of Subriemannian Geometries, their Geodesics and Applications, Amer. Math. Soc., Providence, RI, 2002.

    MATH  Google Scholar 

  36. J. C. Polking, A survey of removable singularities, Seminar on Nonlinear Partial Differential Equations, Springer, New York, 1984, pp. 261–292.

    MATH  Google Scholar 

  37. C. A. Rogers, Hausdorff Measures, Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  38. R. S. Strichartz, Self-similarity on nilpotent Lie groups, Geometric Analysis, Amer. Math. Soc., Providence, RI, 1992, pp. 123–157.

    MATH  Google Scholar 

  39. R. S. Strichartz, Self-similarity in harmonic analysis, J. Fourier Anal. Appl. 1 (1994), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  40. X. Tolsa, Painlevéś problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003), 105–149.

    Article  MathSciNet  MATH  Google Scholar 

  41. X. Tolsa, Analytic capacity, rectifiability, and the Cauchy integral, International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1505–1527.

    MATH  Google Scholar 

  42. J. T. Tyson, Global conformal Assouad dimension in the Heisenberg group, Conform. Geom. Dyn. 12 (2008), 32–57.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Verdera, Removability, capacity and approximation, Complex Potential Theory, Kluwer Acad. Publ., Dordrecht, 1994, pp. 419–473.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Chousionis.

Additional information

JTT supported by NSF grant DMS-1201875.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chousionis, V., Tyson, J.T. Removable sets for homogeneous linear partial differential equations in Carnot groups. JAMA 128, 215–238 (2016). https://doi.org/10.1007/s11854-016-0007-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-016-0007-y

Keywords

Navigation