Skip to main content
Log in

Hardy-Littlewood series and even continued fractions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

By a result of Hardy-Littlewood concerning the growth of the sums \(\sum\nolimits_{n = 1}^N {{e^{i\pi {n^2}x}}} \), for each s ∈ (1/2, 1], the series \({F_s}(x) = \sum\nolimits_{n = 1}^\infty {{e^{i\pi {n^2}x/{n^s}}}} \) converges almost everywhere but not everywhere on [−1, 1]. However, there does not yet exist an intrinsic description of the set of convergence for F s . In this paper, we define in terms of even continued fractions a subset of [−1, 1] of full measure where the series converges. As an intermediate step, we prove that for s > 0, the sequence of functions

$$\sum\limits_{n = 1}^N {\frac{{{e^{i\pi {n^2}x}}}}{{{n^S}}} - {e^{{\text{sign}}(x)i\frac{\pi }{4}}}|x{|^{S - \frac{1}{2}}}\sum\limits_{n = 1}^{\left\lfloor {N|x|} \right\rfloor } {\frac{{{e^{ - i\pi {n^2}/x}}}}{{{n^S}}}} } $$

converges as N → ∞ to a function Ω s continuous on [−1, 1] \ {0} with (at most) a singularity at x = 0 of type x (s−1)/2 (s ≠ 1) or a logarithmic singularity (s = 1). We provide an explicit expression for Ω s and the error term. Finally, we study thoroughly the convergence properties of certain series defined in terms of the convergents of the even continued fraction of an irrational number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bettin and B. Conrey, Period functions and cotangent sums, Algebra Number Theory 7 (2013), 215–242.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Cellarosi, Limiting curlicue measures for theta sums, Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), 466–497.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Choimet and H. Quefféllec, Analyse mathématique. Grands théorèmes du vingtième siècle, Calvage et Mounet, 2009.

  4. E. A. Coutsias and N. D. Kazarinoff, The approximate functional formula for the theta function and Diophantine Gauss sums, Trans. Amer. Math. Soc. 350 (1998), 615–641.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. J. Duistermaat, Self-similarity of “Riemann’s nondifferentiable function”, Nieuw Arch. Wisk. (4) 9 (1991), 303–337.

    MATH  MathSciNet  Google Scholar 

  6. A. Fedotov and F. Klopp, Renormalization of exponential sums and matrix cocycles, Séminaire; Equations aux Dérivées Partielles 2004–2005, Ècole Polytech., Palaiseau, 2005.

    Google Scholar 

  7. J. Gerver, More on the differentiability of the Riemann function, Amer. J. Math. 93 (1971), 33–41.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. H. Hardy and J. E. Littlewood, Some problems of diophantine approximation, Acta Math. 37 (1914), 193–239.

    Article  MathSciNet  Google Scholar 

  9. S. Itatsu, Differentiability of Riemann’s function, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), 492–495.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Jaffard, The spectrum of singularities of Riemann’s function, Rev. Mat. Iberoamericana 12 (1996), 441–460.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Kraaikamp and A. Lopes, The theta group and the continued fraction expansion with even partial quotients, Geom. Dedicata 59 (1996), 293–333.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Loya, Amazing and Aesthetic Aspects of Analysis: On the incredible infinite (A Course in Undergraduate Analysis, Fall 2006), www.math.bingamton.edu/dennis/478.f07/EleAna.pdf

  13. W. Luther, The differentiability of Fourier gap series and “Riemann’s example” of a continuous, nondifferentiable function, J. Approx. Theory 48 (1986), 303–321.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. J. Mordell, The approximate functional formula for the theta function, J. London Math. Soc. 1 (1926), 68–72.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Rivoal and J. Roques, Convergence and modular type properties of a twisted Riemann series, Unif. Distrib. Theory 8 (2013), 97–119.

    MATH  MathSciNet  Google Scholar 

  16. F. Schweiger, Continued fractions with odd and even partial quotients, Arbeitsber. Math. Inst. Univ. Salzburg 4 (1982), 59–70.

    Google Scholar 

  17. F. Schweiger, On the approximation by continued fractions with odd and even partial quotients, Arbeitsber. Math. Inst. Univ. Salzburg 1–2 (1984), 105–114.

    Google Scholar 

  18. Y. Sinai, Limit theorems for trigonometric sums. Theory of curlicues, Russian Math. Surveys, 63 (2008), 1023–1029.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanguy Rivoal.

Additional information

Research partially supported by the ANR project HAMOT, ANR-2010-BLAN-0115-03.

Research partially supported by the ANR project MUTADIS, ANR-11-JS01-0009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivoal, T., Seuret, S. Hardy-Littlewood series and even continued fractions. JAMA 125, 175–225 (2015). https://doi.org/10.1007/s11854-015-006-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-006-4

Keywords

Navigation