Skip to main content
Log in

Positive solutions to a supercritical elliptic problem that concentrate along a thin spherical hole

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider the supercritical problem

$$ - \Delta v = {\left| v \right|^{p - 2}}v{\text{ in }}{\Theta _\epsilon },{\text{ }}v = 0{\text{ on }}\partial {\Theta _\epsilon }$$

, where Θ is a bounded smooth domain in ℝN, N ≥ 3, p > 2*:= 2N/(N − 2), and Θ is obtained by deleting the -neighborhood of some sphere which is embedded in Θ. We show that in some particular situations, for small enough > 0, this problem has a positive solution {itv}{in{it\te}} and that this solution concentrates and blows up along the sphere as → 0. Our approach is to reduce this problem by means of a Hopf map to a critical problem of the form

$$ - \Delta u = Q(x){\left| u \right|^{4/n - 2}}u{\text{ in }}{\Omega _\epsilon },{\text{ }}u = 0{\text{ on }}\partial {\Omega _\epsilon }$$

, in a punctured domain \({\Omega _\epsilon }: = \{ x \in \Omega :\left| {x - {\xi _0}} \right| > \epsilon \} \) of lower dimension. We show that if Ω is a bounded smooth domain in ℝn, n ≥ 3, \({\xi _0} \in \Omega ,Q \in {C^2}(\overline \Omega )\) is positive, and \(\nabla Q({\xi _0}) \ne 0\), then for small enough > 0, this problem has a positive solution u ε which concentrates and blows up at Ξ 0 as → 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ackermann, M. Clapp, and A. Pistoia, Boundary clustered layers for some supercritical problems, J. Differential Equations 254 (2013), 4168–4193.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253–294.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Baird and J. C. Wood, Harmonic Morphisms Between Riemannian Manifolds, Oxford University Press, Oxford, 2003.

    Book  MATH  Google Scholar 

  4. M. Clapp, J. Faya, and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents, Calc. Var. Partial Differential Equations 48 (2013), 611–623.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. del Pino, P. Felmer, and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Soc. 35 (2003), 513–521.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. del Pino, P. Felmer, and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron’s problem. Calc. Var. Partial Differential Equations 16 (2003), 113–145.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. del Pino, M. Musso, and F. Pacard, Bubbling along boundary geodesics near the second critical exponent, J. Eur. Math. Soc. (JEMS) 12 (2010), 1553–1605.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Eells and A. Ratto, Harmonic Maps and Minimal Immersions with Symmetries, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  9. Y. Ge, M. Musso, and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Comm. Partial Differential Equations 35 (2010), 1419–1457.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 38 (1975), 557–569.

    MathSciNet  Google Scholar 

  11. S. Kim and A. Pistoia, Clustered boundary layer sign changing solutions for a supercritical problem, J. London Math. Soc. (2) 88 (2013), 227–250.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Kim, and A. Pistoia, Boundary towers of layers for some supercritical problems, J. Differential Equations 255 (2013), 2302–2339.

    Article  MATH  MathSciNet  Google Scholar 

  13. Y.Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998), 487–545.

    MATH  MathSciNet  Google Scholar 

  14. R. Molle and A. Pistoia, Concentration phenomena in elliptic problems with critical and supercritical growth, Adv. Differential Equations 8 (2003), 547–570.

    MATH  MathSciNet  Google Scholar 

  15. F. Pacella and A. Pistoia, Bubble concentration on spheres for supercritical elliptic problems, Progress in Nonlinear Differential Equations and Their Applications 85 (2014), 323–340.

    Google Scholar 

  16. F. Pacella and P. N. Srikanth, A reduction method for semilinear elliptic equations and solutions concentrating on spheres, J. Funct. Anal. 266 (2014), 6456–6472.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19–30.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal. 114 (1993), 97–105.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity, Differential Integral Equations 8 (1995), 577–586.

    MATH  MathSciNet  Google Scholar 

  20. S. I. Pohozhaev, Eigenfunctions of the equation Δu + λf (u) = 0. Soviet Math. Dokl. 6 (1965), 1408–1411.

    Google Scholar 

  21. O. Rey, Sur un problème variationnel non compact: l’effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 349–352.

    MATH  MathSciNet  Google Scholar 

  22. J. Wei and S. Yan, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth, J. Math. Pures Appl. (9) 96 (2011), 307–333.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Willem, Minimax Theorems, Birkhäuser Boston, Boston MA, 1996.

    Book  MATH  Google Scholar 

  24. J. C. Wood, Harmonic morphisms between Riemannian manifolds, Modern Trends in Geometry and Topology, Cluj Univ. Press, Cluj-Napoca, 2006, pp. 397–414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Clapp.

Additional information

M. Clapp and J. Faya are supported by CONACYT grant 129847 and PAPIIT grant IN106612 (Mexico).

A. Pistoia is supported by Università degli Studi di Roma ”La Sapienza” Accordi Bilaterali ”Esistenza e proprietà geometriche di soluzioni di equazioni ellittiche non lineari” (Italy).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clapp, M., Faya, J. & Pistoia, A. Positive solutions to a supercritical elliptic problem that concentrate along a thin spherical hole. JAMA 126, 341–357 (2015). https://doi.org/10.1007/s11854-015-0020-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0020-6

Keywords

Navigation