Furstenberg entropy realizations for virtually free groups and lamplighter groups

Abstract

Let (G,µ) be a discrete group with a generating probability measure. Nevo showed that if G has Kazhdan’s property (T), then there exists ɛ > 0 such that the Furstenberg entropy of any (G,µ)-stationary ergodic space is either 0 or larger than ɛ. Virtually free groups, such as SL 2(ℤ), do not have property (T), and neither do their extensions, such as surface groups. For virtually free groups, we construct stationary actions with arbitrarily small, positive entropy. The construction involves building and lifting spaces of lamplighter groups. For some classical lamplighter gropus, these spaces realize a dense set of entropies between 0 and the Poisson boundary entropy.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    U. Bader and Y. Shalom, Factor and normal subgroup theorems for lattices in products of groups, Invent. Math. 163 (2006), 415–454.

    MATH  MathSciNet  Article  Google Scholar 

  2. [2]

    L. Bowen, Random walks on random coset spaces with applications to Furstenberg entropy, Invent. Math. 196 (2014), 485–510.

    MATH  MathSciNet  Article  Google Scholar 

  3. [3]

    L. Bowen, R. Grigorchuk, and R. Kravchenko, Invariant random subgroups of the lamplighter group, Israel J. Math. 207 (2015), 763–782.

    MathSciNet  Article  Google Scholar 

  4. [4]

    A. Connes and B. Weiss, Property T and asymptotically invariant sequences, Israel J. Math. 37 (1980), 209–210.

    MATH  MathSciNet  Article  Google Scholar 

  5. [5]

    R. Durrett, Probability: Theory and Examples, second ed., Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  6. [6]

    A. Erschler, Poisson Furstenberg boundary of random walks on wreath products and free metabelian groups, Comment. Math. Helv. 86 (2011), 113–143.

    MATH  MathSciNet  Article  Google Scholar 

  7. [7]

    A. Furman, Random walks on groups and random transformations, Handbook of Dynamical Systems, vol. 1A, North-Holland, Amsterdam, 2002, pp. 931–1014.

    Google Scholar 

  8. [8]

    H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377–428.

    MATH  MathSciNet  Article  Google Scholar 

  9. [9]

    H. Furstenberg, Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, vol. 1, Dekker, New York, 1971, pp. 1–63.

    Google Scholar 

  10. [10]

    H. Furstenberg and E. Glasner, Stationary dynamical systems, Dynamical Numbers — Interplay between Dynamical Systems and Number Theory, Contemp. Math. 532, Amer. Math. Soc., Providence, RI, 2010, pp. 1–28.

    Google Scholar 

  11. [11]

    Y. Hartman, Y. Lima, and O. Tamuz, An Abramov formula for stationary spaces of discrete groups, Ergodic Theory Dynam. Systems 34 (2014), 837–853.

    MATH  MathSciNet  Article  Google Scholar 

  12. [12]

    V. A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, Probability Measures on Groups, Plenum Press, New York, 1991, pp. 205–238.

    Google Scholar 

  13. [13]

    V. A. Kaimanovich, Discretization of bounded harmonic functions on Riemannian manifolds and entropy, Potential Theory, de Gruyter, Berlin, 1992, pp. 213–223.

    Google Scholar 

  14. [14]

    V. A. Kaimanovich, Measure-theoretic boundaries of markov chains, 0–2 laws and entropy, Harmonic Analysis and Discrete Potential Theory, Plenum, New York, 1992, pp. 145–180.

    Google Scholar 

  15. [15]

    V. A. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2) 152 (2000), 659–692.

    MATH  MathSciNet  Article  Google Scholar 

  16. [16]

    V. A. Kaimanovich, Amenability and the Liouville property, Israel J. Math. 149 (2005), 45–85.

    MATH  MathSciNet  Article  Google Scholar 

  17. [17]

    V. A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), 457–490.

    MATH  MathSciNet  Article  Google Scholar 

  18. [18]

    A. Karlsson and W. Woess, The Poisson boundary of lamplighter random walks on trees, Geom. Dedicata 124 (2007), 95–107.

    MATH  MathSciNet  Article  Google Scholar 

  19. [19]

    G. W. Mackey, Point realizations of transformation groups, Illinois J. Math 6 (1962), 327–335.

    MATH  MathSciNet  Google Scholar 

  20. [20]

    A. Nevo, The spectral theory of amenable actions and invariants of discrete groups, Geom. Dedicata 100 (2003), 187–218.

    MATH  MathSciNet  Article  Google Scholar 

  21. [21]

    A. Nevo and R. J. Zimmer, Rigidity of Furstenberg entropy for semisimple Lie group actions, Ann. Sci. École Norm. Sup. (4) 33 (2000), 321–343.

    MATH  MathSciNet  Google Scholar 

  22. [22]

    G. Stuck and R. J. Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. (2) 139 (1994), 723–747.

    MATH  MathSciNet  Article  Google Scholar 

  23. [23]

    W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge University Press, Cambridge, 2000.

    MATH  Book  Google Scholar 

  24. [24]

    R. J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal. 27 (1978), 350–372.

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yair Hartman.

Additional information

Y. Hartman is supported by the European Research Council, grant 239885.

O. Tamuz is supported by ISF grant 1300/08, and is a recipient of the Google Europe Fellowship in Social Computing. This research is supported in part by this Google Fellowship.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartman, Y., Tamuz, O. Furstenberg entropy realizations for virtually free groups and lamplighter groups. JAMA 126, 227–257 (2015). https://doi.org/10.1007/s11854-015-0016-2

Download citation

Keywords

  • Markov Chain
  • Stationary Space
  • Random Walk
  • Discrete Group
  • Large Neighborhood