Skip to main content
Log in

On transversal submanifolds and their measure

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the class of transversal submanifolds in Carnot groups. We characterize their blow-ups at transversal points and prove a negligibility theorem for their “generalized characteristic set”, with respect to the Carnot-Carathéodory Hausdorff measure. This set is made up of all points of non-maximal degree. In light of the fact that C 1 submanifolds in Carnot groups are generically transversal, the previous results prove that the “intrinsic measure” of C 1 submanifolds is generically equivalent to their Carnot-Carathéodory Hausdorff measure. As a result, the restriction of this Hausdorff measure to the submanifold can be replaced by a more manageable integral formula that should be seen as a “sub-Riemannian mass”. Another consequence of these results is an explicit formula, depending only on the embedding of the submanifold, that computes the Carnot-Carathéodory Hausdorff dimension of C 1 transversal submanifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), 51–67.

    Article  MATH  MathSciNet  Google Scholar 

  2. Z. M. Balogh, Size of characteristic sets and functions with prescribed gradients, J. Reine Angew. Math. 564 (2003), 63–83.

    MATH  MathSciNet  Google Scholar 

  3. Z. M. Balogh, C. Pintea, and H. Rohner, Size of tangencies to non-involutive distributions, Indiana Univ. Math. J. 60 (2011), 2061–2092.

    Article  MATH  MathSciNet  Google Scholar 

  4. Z. M. Balogh, J. T. Tyson, and B. Warhurst, Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups, Adv. Math. 220 (2009), 560–619.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Barone Adesi, F. Serra Cassano, and D. Vittone, The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations, Calc. Var. Partial Differential Equations 30 (2007), 17–49.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Capogna, D. Danielli, and N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 2 (1994), 203–215.

    MATH  MathSciNet  Google Scholar 

  7. L. Capogna and N. Garofalo, Ahlfors type estimates for perimeter measures in Carnot-Carathéodory spaces, J. Geom. Anal. 16 (2006), 455–497.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Danielli, N. Garofalo, and D. M. Nhieu, Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces, Mem. Amer. Math. Soc. 182 (2006), no. 857.

  9. D. Danielli, N. Garofalo, and D. M. Nhieu, Sub-Riemannian calculus on hypersurfaces in Carnot groups, Adv. Math. 215 (2007), 292–378.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Danielli, N. Garofalo, and D. M. Nhieu, A notable family of entire intrinsic minimal graphs in the Heisenberg group which are not perimeter minimizing, Amer. J. Math, 130 (2008), 317–339.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.

    MATH  Google Scholar 

  12. B. Franchi, S. Gallot, and R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557–571.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Franchi, R. Serapioni, and F. Serra Cassano, Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, Comm. Anal. Geom. 11 (2003), 909–944.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Franchi, R. Serapioni, and F. Serra Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003), 421–466.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, NJ, 1982.

    MATH  Google Scholar 

  16. N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Gromov, Carnot-Carathéodory spaces seen from within, in Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, pp. 79–323.

    Chapter  Google Scholar 

  18. R. Korte and V. Magnani, Measure of curves in graded groups, Illinois J. Math. 56 (2012), 353–366.

    MATH  MathSciNet  Google Scholar 

  19. E. Le Donne and V. Magnani, Measure of submanifolds in the Engel group, Rev. Mat. Iberoamericana 26 (2010), 333–346.

    Article  MATH  Google Scholar 

  20. V. Magnani, Characteristic points, rectifiability and perimeter measure on stratified groups, J. Eur. Math. Soc. (JEMS) 8 (2006), 585–609.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Magnani, Non-horizontal submanifolds and coarea formula, J. Anal. Math. 106 (2008), 95–127.

    Article  MATH  MathSciNet  Google Scholar 

  22. V. Magnani, Blow-up estimates at horizontal points and applications, J. Geom. Anal. 20 (2010), 705–722.

    Article  MATH  MathSciNet  Google Scholar 

  23. V. Magnani and D. Vittone, An intrinsic measure for submanifolds in stratified groups, J. Reine Angew. Math. 619 (2008), 203–232.

    MATH  MathSciNet  Google Scholar 

  24. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  25. P. Mattila, Measures with unique tangent measures in metric groups, Math. Scand. 97 (2005), 298–308.

    MATH  MathSciNet  Google Scholar 

  26. R. Monti and D. Morbidelli, Regular domains in homogeneous groups, Trans. Amer. Math. Soc. 357 (2005), 2975–3011.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Simon, Lectures on Geometric Measure Theory, Australian National University, Centre for Mathematical Analysis, Canberra, 1983.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentino Magnani.

Additional information

The first author acknowledges the support of the European Project ERC AdG *GeMeThNES*.

The second author acknowledges the support of the US National Science Foundation Grants DMS-0901620 and DMS-1201875.

The third author acknowledges the support of MIUR, GNAMPA of INDAM (Italy), University of Padova, Fondazione CaRiPaRo Project “Nonlinear Partial Differential Equations: models, analysis, and control-theoretic problems” and University of Padova research project “Some analytic and differential geometric aspects in Nonlinear Control Theory, with applications to Mechanics”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnani, V., Tyson, J.T. & Vittone, D. On transversal submanifolds and their measure. JAMA 125, 319–351 (2015). https://doi.org/10.1007/s11854-015-0010-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0010-8

Keywords

Navigation