Skip to main content
Log in

Extremizers for Fourier restriction inequalities: Convex arcs

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We establish the existence of extremizers for a Fourier restriction inequality on planar convex arcs without points with collinear tangents whose curvature satisfies a natural assumption. More generally, we prove that any extremizing sequence of nonnegative functions has a subsequence which converges to an extremizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-G. Bak and D. McMichael, Convolution of a measure with itself and a restriction theorem, Proc. Amer. Math. Soc. 125 (1997), 463–470.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299.

    MATH  MathSciNet  Google Scholar 

  4. E. Carneiro, A sharp inequality for the Strichartz norm, Int. Math. Res. Not. IMRN 2009, 3127–3145.

  5. M. Christ, On extremals for a Radon-like transform, arXiv:1106.0728v1[math.CA].

  6. M. Christ and R. Quilodrán, Gaussians rarely extremize adjoint Fourier restiction inequalities for paraboloids, Proc. Amer. Math. Soc. 142 (2014), 887–896.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Christ and S. Shao, Existence of extremals for a Fourier restriction inequality, Anal. PDE 5 (2012), 261–312.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Christ and S. Shao, On the extremizers of an adjoint Fourier restriction inequality, Adv. Math. 230 (2012), 957–977.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Duyckaerts, F. Merle, and S. Roudenko, Maximizers for the Strichartz norm for small solutions of mass-critical NLS, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), 427–476.

    MATH  MathSciNet  Google Scholar 

  10. C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Fanelli, L. Vega, and N. Visciglia, On the existence of maximizers for a family of restriction theorems, Bull. London Math. Soc. 43 (2011), 811–817.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Fanelli, L. Vega, and N. Visciglia, Existence of maximizers for Sobolev-Strichartz inequalities, Adv. Math. 229 (2012), 1912–1923.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. (JEMS) 9 (2007), 739–774.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Hundertmark and V. Zharnitsky, On sharp Strichartz inequalities in low dimensions, Int. Math. Res. Not. 2006, Art. ID 34080.

  15. M. Kunze, On the existence of a maximizer for the Strichartz inequality, Comm. Math. Phys. 243 (2003), 137–162.

    Article  MATH  MathSciNet  Google Scholar 

  16. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145.

    MATH  Google Scholar 

  17. A. Moyua, A. Vargas, and L. Vega, Restriction theorems and maximal operators related to oscillatory integrals in3, Duke Math. J. 96 (1999), 547–574.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. O’Neil, Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963), 129–142.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Oliveira e Silva, Nonexistence of extremizers for certain convex curves, arXiv:1210.0585 v1 [math CA].

  20. R. Quilodrán, On extremizers for adjoint Fourier restriction inequalities and a result in incidence geometry, Ph.D. thesis, UC Berkeley, 2011.

  21. R. Quilodrán, On extremizing sequences for the adjoint restriction inequality on the cone, J. London Math. Soc. (2) 87 (2013), 233–246.

    Article  Google Scholar 

  22. R. Quilodrán, Nonexistence of extremals for the adjoint restriction inequality on the hyperboloid, J. Anal. Math; to appear. arXiv: 1108.6324v2[math.CA].

  23. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  24. R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705–714.

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Tao, Some recent progress on the restriction conjecture, Fourier Analysis and Convexity, Birkhäuser Boston, Boston, MA, 2004, pp. 217–243.

    Google Scholar 

  26. P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Oliveira e Silva.

Additional information

The author was partially supported by the Fundação para a Ciência e a Tecnologia (FCT/Portugal grant SFRH/BD/28041/2006) and the National Science Foundation under agreement DMS-0901569.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira e Silva, D. Extremizers for Fourier restriction inequalities: Convex arcs. JAMA 124, 337–385 (2014). https://doi.org/10.1007/s11854-014-0035-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-014-0035-4

Keywords

Navigation