Skip to main content
Log in

Entropy theory for sofic groupoids I: The foundations

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

This is the first part in a series in which sofic entropy theory is generalized to class-bijective extensions of sofic groupoids. Here we define topological and measure entropy and prove invariance. We also establish the variational principle, compute the entropy of Bernoulli shift actions and answer a question of Benjy Weiss pertaining to the isomorphism problem for non-free Bernoulli shifts. The proofs are independent of previous literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abert, Y. Glasner, and B. Virag, Kesten’s theorem for invariant random subgroups, Duke Math. J. 163 (2014), 465–488/

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Aldous and R. Lyons, Processes on unimodular random networks, Electron. J. Probab. 12 (2007), 1454–1508.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Avni, Spectral and mixing properties of actions of amenable groups, Electron. Res. Announc. Amer. Math. Soc. 11 (2005), 57–63.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Avni, Entropy theory for cross-sections, Geom. Funct. Anal. 19 (2010), 1515–1538.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York, NY, 1999.

    Book  MATH  Google Scholar 

  6. L. Bowen, A measure-conjugacy invariant for actions of free groups. Ann. of Math. (2) 171 (2010), 1387–1400.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), 217–245.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Bowen, Non-abelian free group actions: Markov processes, the Abramov-Rohlin formula and Yuzvinskii’s formula, Ergodic Theory Dynam. Systems 30 (2010), 1629–1663; Corrigendum with Yonatan Gutman, ibid. 33 (2013), 643–645.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Bowen, The ergodic theory of free group actions: entropy and the f-invariant, Groups Geom. Dyn. 4 (2010), 419–432.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Bowen, Every countably infinite group is almost Ornstein, Dynamical Systems and Group Actions, Contemp. Mathematics 567 (2012), 67–78.

    Article  MathSciNet  Google Scholar 

  11. L. Bowen and Y. Gutman, A Juzvinskii addition theorem for finitely generated free group actions, Ergodic Theory Dynam. Systems 34 (2014). 95–109.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. I. Danilenko, Entropy theory from the orbital point of view, Monatsh. Math. 134 (2001), 121–141.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. I. Danilenko and K. K. Park, Generators and Bernoullian factors for amenable actions and cocycles on their orbits, Ergodic Theory Dynam. Systems 22 (2002), 1715–1745.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. H. Dooley and V. Ya. Golodets, The spectrum of completely positive entropy actions of countable amenable groups, J. Funct. Anal. 196 (2002), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. H. Dooley, V. Ya. Golodets, D. J. Rudolph, and S. D. Sinel’shchikov, Non-Bernoulli systems with completely positive entropy, Ergodic Theory Dynam. Systems 28 (2008), 87–124.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Dykema, D. Kerr, and M. Pichot, Sofic dimension for discrete measured groupoids, Trans. Amer. Math. Soc. 366 (2014), 707–748.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Elek and G. Lippner, Sofic equivalence relations, J. Funct. Anal. 258 (2010), 1692–1708.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Elek and E. Szabó, Sofic groups and direct finiteness, J. Algebra 280 (2004), 426–434.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Elek and E. Szabó, Hyperlinearity, essentially free actions and L 2-invariants. The sofic property, Math. Ann. 332 (2005), 421–441.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Elek and E. Szabó, Sofic representations of amenable groups, Proc. Amer. Math. Soc. 139 (2011), 4285–4291.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Feldman and C. C. Moore, Ergodic equivalence relations and von Neumann algebras I. Trans. Amer. Math. Soc. 234 (1977), 289–324.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS) 1 (1999), 109–197.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.

    Book  MATH  Google Scholar 

  24. D. Kerr, Sofic measure entropy via finite partitions, Groups Geom. Dyn. 7 (2013), 617–632.

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups. Invent. Math. 186 (2011), 501–558

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Kerr and H. Li, Soficity, amenability, and dynamical entropy, Amer. J. Math. 135 (2013), 721–761.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Kuratowski, Topologie, Warsaw-Livoue, 1933.

  28. A. I. Mal’cev, On faithful representations of infinite groups of matrices. Mat. Sb. 8 (1940), 405–422; Amer. Math. Soc. Transl. (2) 45 (1965), 1–18.

    MathSciNet  Google Scholar 

  29. J. M. Ollagnier, Ergodic Theory and Statistical Mechanics, Springer, Berlin, 1985.

    MATH  Google Scholar 

  30. V. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), 449–480.

    Article  MATH  MathSciNet  Google Scholar 

  31. D. J. Rudolph and B. Weiss, Entropy and mixing for amenable group actions. Ann. of Math. (2) 151 (2000), 1119–1150.

    Article  MATH  MathSciNet  Google Scholar 

  32. B. Seward, A subgroup formula for f-invariant entropy, Ergodic Theory Dynam. Systems 34 (2014), 263–298.

    Article  MATH  MathSciNet  Google Scholar 

  33. B. Seward, Finite entropy actions of free groups, rigidity of stabilizers, and a Howe-Moore type phenomenon, arXiv:1205.5090v3[math.DS].

  34. B. Weiss, Sofic groups and dynamical systems, Sankhyā Ser. A 62 (2000), 350–359.

    MATH  Google Scholar 

  35. G. H. Zhang, Local variational principle concerning entropy of a sofic group action, J. Funct. Anal. 262, (2012), 1954–1985.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis Bowen.

Additional information

Supported in part by NSF grant DMS-0968762 and NSF CAREER Award DMS-0954606.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowen, L. Entropy theory for sofic groupoids I: The foundations. JAMA 124, 149–233 (2014). https://doi.org/10.1007/s11854-014-0030-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-014-0030-9

Keywords

Navigation