Spectral bounds for the Neumann-Poincaré operator on planar domains with corners


The boundary double layer potential, or the Neumann-Poincaré operator, is studied on the Sobolev space of order 1/2 along the boundary, coinciding with the space of charges giving rise to double layer potentials with finite energy in the whole space. Poincaré’s program of studying the spectrum of the boundary double layer potential is developed in complete generality on closed Lipschitz hypersurfaces in euclidean space. Furthermore, the Neumann-Poincaré operator is realized as a singular integral transform bearing similarities to the Beurling-Ahlfors transform in 2 dimensions. As an application, in the case of planar curves with corners, bounds for the spectrum of the Neumann-Poincaré operator are derived from recent results in quasi-conformal mapping theory.

This is a preview of subscription content, log in to check access.


  1. [1]

    L. V. Ahlfors, Remarks on the Neumann-Poincaré integral equation, Pacific J. Math. 3 (1952), 271–280.

    Article  MathSciNet  Google Scholar 

  2. [2]

    H. Ammari, H. Kang, and H. Lee, Layer Potential Techniques in Spectral Analysis, American Mathematical Society, Providence, RI, 2009.

    Google Scholar 

  3. [3]

    S. Bergman and M. Schiffer, Kernel functions and conformal mapping, Compositio Math. 8 (1951), 205–249.

    MATH  MathSciNet  Google Scholar 

  4. [4]

    J. Bremer, A fast direct solver for the integral equations of scattering theory on planar curves with corners, J. Comput. Phys. 231 (2012), 1879–1899.

    Article  MATH  MathSciNet  Google Scholar 

  5. [5]

    T. Carleman, Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken, Almqvist and Wiksels, Uppsala, 1916.

    Google Scholar 

  6. [6]

    T. Chang and K. Lee, Spectral properties of the layer potentials on Lipschitz domains, Illinois J. Math. 52 (2008), 463–472.

    MathSciNet  Google Scholar 

  7. [7]

    F. Cobos and T. Kühn, Eigenvalues of weakly singular integral operators, J. London Math. Soc. (2) 41 (1990), 323–335.

    Article  MATH  MathSciNet  Google Scholar 

  8. [8]

    R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), 361–387.

    Article  MATH  MathSciNet  Google Scholar 

  9. [9]

    J. Helsing and K-M. Perfekt, On the polarizability and capacitance of the cube, Appl. Comput. Harmon. Anal. 34 (2013), 445–468.

    Article  MATH  MathSciNet  Google Scholar 

  10. [10]

    E. Johnston, A “counterexample” for the Schwarz-Christoffel transform, Amer. Math. Monthly 90 (1983), 701–703.

    Article  MATH  MathSciNet  Google Scholar 

  11. [11]

    D. Khavinson, M. Putinar, and H. S. Shapiro, Poincaré’s variational problem in potential theory, Arch. Ration. Mech. Anal. 185 (2007), 143–184.

    Article  MATH  MathSciNet  Google Scholar 

  12. [12]

    S. Krushkal, Fredholm eigenvalues of Jordan curves: geometric, variational and computational aspects, Analysis and Mathematical Physics, Birkhäuser, Basel, 2009, pp. 349–368.

    Google Scholar 

  13. [13]

    R. Kühnau, Möglichst konforme Spiegelung an einer Jordankurve, Jahresber. Deutsch. Math.-Verein. 90 (1988), 90–109.

    MATH  MathSciNet  Google Scholar 

  14. [14]

    L. Lichtenstein, Neuere Entwicklung der Potentialtheorie; Konforme Abbildung, Encyklop. d. math. Wissensch. II C 3, Teubner, Leipzig, 1910.

  15. [15]

    S. E. Mikhailov, About traces, extensions, and co-normal derivative operators on Lipschitz domains, Integral Methods in Science and Engineering, Birkhäuser Boston, Boston, MA, 2008, pp. 149–160.

    Google Scholar 

  16. [16]

    I. Mitrea, On the spectra of elastostatic and hydrostatic layer potentials on curvilinear polygons, J. Fourier Anal. Appl. 8 (2002), 443–487.

    Article  MATH  MathSciNet  Google Scholar 

  17. [17]

    Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  18. [18]

    Ch. Pommerenke, Conformal maps at the boundary, Handbook of Complex Analysis: Geometric Function Theory, Vol. 1, North-Holland, Amsterdam, 2002, pp. 37–74.

    Google Scholar 

  19. [19]

    G. Schober, Estimates for Fredholm eigenvalues based on quasiconformal mapping, Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen, Lecture Notes in Math. 333, Springer, Berlin, 1973, pp. 211–217.

    Google Scholar 

  20. [20]

    G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), 572–611.

    Article  MATH  MathSciNet  Google Scholar 

  21. [21]

    S. Werner, Spiegelungskoeffizient und Fredholmscher Eigenwert für gewisse Polygone, Ann. Acad. Sci. Fenn. Math. 22 (1997), 165–186.

    MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Karl-Mikael Perfekt.

Additional information

The work of the first author was partially supported by The Royal Physiographic Society in Lund.

The work of the second author was partially supported by the National Science Foundation Grant DMS-10-01071.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perfekt, K., Putinar, M. Spectral bounds for the Neumann-Poincaré operator on planar domains with corners. JAMA 124, 39–57 (2014). https://doi.org/10.1007/s11854-014-0026-5

Download citation


  • Angle Operator
  • Bergman Space
  • Lipschitz Domain
  • Essential Spectrum
  • Singular Integral Operator