Journal d'Analyse Mathématique

, Volume 124, Issue 1, pp 39–57 | Cite as

Spectral bounds for the Neumann-Poincaré operator on planar domains with corners

  • Karl-Mikael PerfektEmail author
  • Mihai Putinar


The boundary double layer potential, or the Neumann-Poincaré operator, is studied on the Sobolev space of order 1/2 along the boundary, coinciding with the space of charges giving rise to double layer potentials with finite energy in the whole space. Poincaré’s program of studying the spectrum of the boundary double layer potential is developed in complete generality on closed Lipschitz hypersurfaces in euclidean space. Furthermore, the Neumann-Poincaré operator is realized as a singular integral transform bearing similarities to the Beurling-Ahlfors transform in 2 dimensions. As an application, in the case of planar curves with corners, bounds for the spectrum of the Neumann-Poincaré operator are derived from recent results in quasi-conformal mapping theory.


Angle Operator Bergman Space Lipschitz Domain Essential Spectrum Singular Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. V. Ahlfors, Remarks on the Neumann-Poincaré integral equation, Pacific J. Math. 3 (1952), 271–280.CrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Ammari, H. Kang, and H. Lee, Layer Potential Techniques in Spectral Analysis, American Mathematical Society, Providence, RI, 2009.CrossRefzbMATHGoogle Scholar
  3. [3]
    S. Bergman and M. Schiffer, Kernel functions and conformal mapping, Compositio Math. 8 (1951), 205–249.zbMATHMathSciNetGoogle Scholar
  4. [4]
    J. Bremer, A fast direct solver for the integral equations of scattering theory on planar curves with corners, J. Comput. Phys. 231 (2012), 1879–1899.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    T. Carleman, Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken, Almqvist and Wiksels, Uppsala, 1916.Google Scholar
  6. [6]
    T. Chang and K. Lee, Spectral properties of the layer potentials on Lipschitz domains, Illinois J. Math. 52 (2008), 463–472.MathSciNetGoogle Scholar
  7. [7]
    F. Cobos and T. Kühn, Eigenvalues of weakly singular integral operators, J. London Math. Soc. (2) 41 (1990), 323–335.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), 361–387.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    J. Helsing and K-M. Perfekt, On the polarizability and capacitance of the cube, Appl. Comput. Harmon. Anal. 34 (2013), 445–468.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    E. Johnston, A “counterexample” for the Schwarz-Christoffel transform, Amer. Math. Monthly 90 (1983), 701–703.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    D. Khavinson, M. Putinar, and H. S. Shapiro, Poincaré’s variational problem in potential theory, Arch. Ration. Mech. Anal. 185 (2007), 143–184.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    S. Krushkal, Fredholm eigenvalues of Jordan curves: geometric, variational and computational aspects, Analysis and Mathematical Physics, Birkhäuser, Basel, 2009, pp. 349–368.Google Scholar
  13. [13]
    R. Kühnau, Möglichst konforme Spiegelung an einer Jordankurve, Jahresber. Deutsch. Math.-Verein. 90 (1988), 90–109.zbMATHMathSciNetGoogle Scholar
  14. [14]
    L. Lichtenstein, Neuere Entwicklung der Potentialtheorie; Konforme Abbildung, Encyklop. d. math. Wissensch. II C 3, Teubner, Leipzig, 1910.Google Scholar
  15. [15]
    S. E. Mikhailov, About traces, extensions, and co-normal derivative operators on Lipschitz domains, Integral Methods in Science and Engineering, Birkhäuser Boston, Boston, MA, 2008, pp. 149–160.Google Scholar
  16. [16]
    I. Mitrea, On the spectra of elastostatic and hydrostatic layer potentials on curvilinear polygons, J. Fourier Anal. Appl. 8 (2002), 443–487.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.CrossRefzbMATHGoogle Scholar
  18. [18]
    Ch. Pommerenke, Conformal maps at the boundary, Handbook of Complex Analysis: Geometric Function Theory, Vol. 1, North-Holland, Amsterdam, 2002, pp. 37–74.Google Scholar
  19. [19]
    G. Schober, Estimates for Fredholm eigenvalues based on quasiconformal mapping, Numerische, insbesondere approximationstheoretische Behandlung von Funktionalgleichungen, Lecture Notes in Math. 333, Springer, Berlin, 1973, pp. 211–217.CrossRefGoogle Scholar
  20. [20]
    G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), 572–611.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    S. Werner, Spiegelungskoeffizient und Fredholmscher Eigenwert für gewisse Polygone, Ann. Acad. Sci. Fenn. Math. 22 (1997), 165–186.MathSciNetGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Mathematics DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations