Journal d'Analyse Mathématique

, Volume 123, Issue 1, pp 95–105 | Cite as

A new characterisation of the Eremenko-Lyubich class



The Eremenko-Lyubich class of transcendental entire functions with a bounded set of singular values has been much studied. We give a new characterisation of this class of functions. We also give a new result regarding direct singularities which are not logarithmic.


Entire Function Meromorphic Function Hausdorff Dimension Logarithmic Singularity Direct Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Barański, B. Karpińska, and A. Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, Int. Math. Res. Not. IMRN 2009, 615–624.Google Scholar
  2. [2]
    W. Bergweiler and A. E. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355–373.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    W. Bergweiler and A. E. Eremenko, Direct singularities and completely invariant domains of entire functions, Illinois J. Math. 52 (2008), 243–259.MATHMathSciNetGoogle Scholar
  4. [4]
    W. Bergweiler, P. J. Rippon, and G. M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. Lond. Math. Soc. (3) 97 (2008), 368–400.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    C. J. Bishop, Constructing entire functions by quasiconformal folding, Preprint (2012).Google Scholar
  6. [6]
    A. Bolsch, Periodic Fatou components of meromorphic functions, Bull. London Math. Soc. 31 (1999), 543–555.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    L. Carleson and T. W. Gamelin, Complex Dynamics, Springer-Verlag, New York, 1993.CrossRefMATHGoogle Scholar
  8. [8]
    A. E. Eremenko and M. Y. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989–1020.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    M. Heins, Asymptotic spots of entire and meromorphic functions, Ann. of Math.(2) 66 (1957), 430–439.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    M. E. Herring, Mapping properties of Fatou components, Ann. Acad. Sci. Fenn. Math. 23 (1998), 263–274.MathSciNetGoogle Scholar
  11. [11]
    F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Ph.D. thesis, Helsingfors, 1914.Google Scholar
  12. [12]
    J. K. Langley, Deficient values of derivatives of meromorphic functions in the class S, Comput. Methods Funct. Theory 4 (2004), 237–247.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    J. K. Langley and J. H. Zheng, On the fixpoints, multipliers and value distribution of certain classes of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), 133–150.MathSciNetGoogle Scholar
  14. [14]
    R. Miranda, Algebraic Curves and Riemann Surfaces, Amer. Math. Soc., Providence, RI, 1995.MATHGoogle Scholar
  15. [15]
    D. A. Nicks, Rational deficient functions of derivatives of mappings in the classes S and B, Comput. Methods Funct. Theory 9 (2009), 239–253.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    L. Rempe, On a question of Eremenko concerning escaping components of entire functions, Bull. Lond. Math. Soc. 39 (2007), 661–666.CrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    L. Rempe, Rigidity of escaping dynamics for transcendental entire functions, Acta Math. 203 (2009), 235–267.CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    L. Rempe and G. M. Stallard, Hausdorff dimensions of escaping sets of transcendental entire functions, Proc. Amer. Math. Soc. 138 (2010), 1657–1665.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    P. J. Rippon and G. M. Stallard, Iteration of a class of hyperbolic meromorphic functions, Proc. Amer. Math. Soc. 127 (1999), 3251–3258.CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    G. Rottenfusser, J. Rückert, L. Rempe, and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2) 173 (2011), 77–125.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions II, Math. Proc. Cambridge Philos. Soc. 119 (1996), 513–536.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    J. Zheng, Value Distribution of Meromorphic Functions, Tsinghua University Press, Beijing, 2010.MATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsThe Open UniversityMilton KeynesUK

Personalised recommendations