Skip to main content
Log in

Decay estimates for nonlinear nonlocal diffusion problems in the whole space

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, we obtain bounds for the decay rate in the L r (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely,

$$u_t \left( {x,t} \right) = \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( {y,t} \right) - u\left( {x,t} \right)} \right|^{p - 2} \left( {u\left( {y,t} \right) - u\left( {x,t} \right)} \right)dy, x \in \mathbb{R}^d , t > 0.}$$

. We consider a kernel of the form K(x, y) = ψ(ya(x)) + ψ(xa(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x) = Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form

$$T\left( u \right) = - \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( y \right) - u\left( x \right)} \right|^{p - 2} \left( {u\left( y \right) - u\left( x \right)} \right)dy, 1 \leqslant p < \infty .}$$

. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd:

$$\lambda _{1,p} \left( {\mathbb{R}^d } \right) = 2\left( {\int_{\mathbb{R}^d } {\psi \left( z \right)dz} } \right)\left| {\frac{1} {{\left| {\det A} \right|^{1/p} }} - 1} \right|^p .$$

Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1/p1,p as p→∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Andreu, J. M. Mazon, J. D. Rossi, and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations, J. Evol. Equ. 8 (2008), 189–215.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Andreu, J. M. Mazon, J. D. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl. (9) 90 (2008), 201–227.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo. The limit as p → ∞ in a nonlocal p-Laplacian evolution equation. A nonlocal approximation of a model for sandpiles, Calc. Var. Partial Differential Equations 35 (2009), 279–316.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal. 40 (2009), 1815–1851.

    Article  MATH  Google Scholar 

  5. F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, Nonlocal Diffusion Problems, Amer. Math. Soc., Providence RI; Real Sociedad Mathemática Española, Madrid, 2010.

    Book  MATH  Google Scholar 

  6. G. Bachman and L. Narici, Functional Analysis, Dover, New York, 2000.

    MATH  Google Scholar 

  7. P. Bates, X. Chen, and A. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var. Partial Differential Equations 24 (2005), 261–281.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Bates, P. Fife, X. Ren, and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal. 138 (1997), 105–136.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Chasseigne, M. Chaves, and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. 86 (2006), 271–291.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: existence and stability, J. Differential Equations 155 (1999), 17–43.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Cortázar, J. Coville, M. Elgueta, and S. Martínez, A non local inhomogeneous dispersal process, J. Differential Equations 241 (2007), 332–358.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Cortázar, M. Elgueta, and J. D. Rossi, A nonlocal diffusion equation whose solutions develop a free boundary, Ann. Henri Poincaré 6 (2005), 269–281.

    Article  MATH  Google Scholar 

  13. C. Cortázar, M. Elgueta, J. D. Rossi, and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations 234 (2007), 360–390.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Cortázar, M. Elgueta, J. D. Rossi, and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal. 187 (2008), 137–156.

    Article  MATH  Google Scholar 

  15. J. Coville, On uniqueness and monotonicity of solutions on non-local reaction diffusion equations, Ann. Mat. Pura Appl. (4) 185 (2006), 461–485.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations 249 (2010), 2921–2953.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Coville and L. Dupaigne, On a nonlocal equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sec. A 137 (2007), 1–29.

    Article  MathSciNet  Google Scholar 

  18. Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, A nonlocal vector calculus, non-local volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl, Sci. 23 (2013), 493–540.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer-Verlag, Berlin, 2003, pp. 153–191

    Chapter  Google Scholar 

  20. J. García-Melián and J. D. Rossi, Maximum and antimaximum principles for some nonlocal diffusion operators, Nonlinear Anal. 71 (2009), 6116–6121.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. García-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations 246 (2009), 21–38.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  23. V. Hutson, S. Martínez, K. Mischaikow, and G. T. Vickers, The evolution of dispersal, J. Math. Biol. 47 (2003), 483–517.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Funct. Anal. 251 (2007), 399–437.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, J. Math. Pures Appl. (9) 92 (2009), 163–187.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. I. Ignat, J. D. Rossi, and A. San Antolin, Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space, J. Differential Equations 252 (2012), 6429–6447.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. 10 (1962), 199–325.

    Google Scholar 

  28. M. L. Parks, R. B. Lehoucq, S. Plimpton, and S. Silling, Implementing peridynamics within a molecular dynamics code, Comput. Physics Comm. 179 (2008), 777–783.

    Article  MATH  Google Scholar 

  29. W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations 249 (2010), 747–795.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids 48 (2000), 175–209.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. A. Silling and R. B. Lehoucq, Convergence of peridynamics to classical elasticity theory, J. Elasticity 93 (2008), 13–37.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Ignat.

Additional information

L. I. Ignat is partially supported by grants PN II-RU-TE 4/2010 and PCCE-55/2008 of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, MTM2011-29306-C02-00, MICINN, Spain and ERC Advanced Grant FP7-246775 NUMERIWAVES.

D. Pinasco is partially supported by grants ANPCyT PICT 2011-0738 and CONICET PIP 0624.

J. D. Rossi and A. San Antolin are partially supported by the grant MTM2011-27998 MICINN MICINN, Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignat, L.I., Pinasco, D., Rossi, J.D. et al. Decay estimates for nonlinear nonlocal diffusion problems in the whole space. JAMA 122, 375–401 (2014). https://doi.org/10.1007/s11854-014-0011-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-014-0011-z

Keywords

Navigation