Skip to main content
Log in

Prescribing the Jacobian in critical spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider the Sobolev space \(X = W^{s,p} \left( {\mathbb{S}^m ;\mathbb{S}^{k - 1} } \right)\). We prove the existence of a robust distributional Jacobian Ju for uX, provided spk − 1; this generalizes a result of Bourgain, Brezis, and the second author [10] dealing with the case m = k. We identify the image of the map X ϶ uJu in the critical case sp = k − 1. This extends a result of Alberti, Baldo, and Orlandi [2] for s = 1 and p = k − 1. We also present a new, analytical, dipole construction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, Sobolev Spaces, Academic Press, New York-London, 1975.

    MATH  Google Scholar 

  2. G. Alberti, S. Baldo, and G. Orlandi, Functions with prescribed singularities, J. Eur. Math. Soc. (JEMS) 5 (2003), 275–311.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Almgren, F. Browder, and E. H. Lieb, Co-area, liquid crystals, and minimal surfaces, in Partial Differential Equations, Springer Lecture Notes in Mathematics 1306, Berlin, 1988, pp. 1–22.

  4. J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), 337–403.

    Article  MathSciNet  Google Scholar 

  5. F. Bethuel, A characterization of maps in H 1(B 3, S 2) which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1980), 269–286.

    MathSciNet  Google Scholar 

  6. F. Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), 153–206.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Bethuel, J. M. Coron, F. Demengel, and F. Hélein, A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds, in Nematics, Kluwer Acad. Publ., Dordrecht, 1991, pp. 15–23.

    Chapter  Google Scholar 

  8. F. Bethuel and X. M. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60–75.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Bourgain, H. Brezis, and P. Mironescu, H 1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation, Publ.Math. Inst. HautesÉtudes Sci. 99 (2004), 1–115.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Bourgain, H. Brezis, and P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math. 58 (2005), 529–551.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Bousquet, Topological singularities in W s,p(S N, S 1), J. Anal. Math. 102 (2007), 311–346.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Bousquet, A. C. Ponce, and J. Van Schaftingen, Strong density for higher order Sobolev spaces into compact manifolds, arXiv:1203.3721.

  13. H. Brezis, J. M. Coron, and E. H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649–705.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1 (2001), 387–404.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Brezis and P. Mironescu, Density in W s,p, in preparation.

  16. H. Brezis, P. Mironescu, and A. Ponce, W 1,1-maps with values into S 1, in Geometric Analysis of PDE and Several Complex Variables, Contemp. Math. 368 Amer. Math. Soc., Providence, RI, 2005, pp. 69–100.

    Chapter  Google Scholar 

  17. H. Brezis and L. Nirenberg, Degree theory and BMO, I. Compact manifolds without boundaries, Selecta Math. (N. S.) 1 (1995), 197–263.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Harmonic analysis of the space BV, Rev. Mat. Iberoamericana 19 (2003), 235–263.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Escobedo, Some remarks on the density of regular mappings in Sobolev classes of SM-valued functions, Rev. Mat. Univ. Complut. Madrid 1 (1988), 127–144.

    MATH  MathSciNet  Google Scholar 

  20. H. Federer, Geometric Measure Theory, Springer-Verlag New York Inc., New York, 1969.

    MATH  Google Scholar 

  21. H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Giaquinta, G. Modica, and J. Souček, Cartesian Currents in the Calculus of Variations I: Cartesian Currents, Springer-Verlag, Berlin, 1998.

    Book  Google Scholar 

  23. F. B. Hang and F. H. Lin, A remark on the Jacobians, Commun. Contemp.Math. 2 (2000), 35–46.

    MATH  MathSciNet  Google Scholar 

  24. R. Hardt, D. Kinderlehrer, and F. H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1980), 297–322.

    MathSciNet  Google Scholar 

  25. R. Hardt and F. H. Lin, Mappings minimizing the Lp norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 555–588.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. L. Jerrard and H. M. Soner, Functions of bounded higher variation, Indiana Univ. Math. J. 51 (2002), 645–677.

    Article  MATH  MathSciNet  Google Scholar 

  27. R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2002), 151–191.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Lafontaine, Introduction aux variétés différentielles, EDP Sciences, Grenoble, 2010.

    Google Scholar 

  29. P. Mironescu, S 1 -valued Sobolev mappings, J. Math. Sci. (N. Y.) 170 (2010), 340–355.

    Article  MathSciNet  Google Scholar 

  30. P. Mironescu, Sobolev spaces of circle-valued maps, in preparation.

  31. I. Molnar, Prescribed singularities with weights, Adv. Nonlinear Anal. 1 (2012), 355–381.

    MATH  MathSciNet  Google Scholar 

  32. F. Morgan, Geometric Measure Theory, A Beginner’s Guide, 4th edition, Elsevier/Academic Press, Amsterdam, 2009.

    MATH  Google Scholar 

  33. L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115–162.

    MATH  MathSciNet  Google Scholar 

  34. M. R. Pakzad and T. Riviere, Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal. 13 (2003), 223–257.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. C. Ponce and J. Van Schaftingen, Closure of smooth maps in W 1,p(B 3; S 2), Differential Integral Equations 22 (2009), 881–900.

    MATH  MathSciNet  Google Scholar 

  36. T. Rivière, Dense subsets of H 1/2(S 2, S 1), Ann. Global Anal. Geom. 18 (2000), 517–528.

    Article  MATH  MathSciNet  Google Scholar 

  37. R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307–335.

    MATH  MathSciNet  Google Scholar 

  38. R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), 253–268.

    MATH  MathSciNet  Google Scholar 

  39. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N. J., 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bousquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bousquet, P., Mironescu, P. Prescribing the Jacobian in critical spaces. JAMA 122, 317–373 (2014). https://doi.org/10.1007/s11854-014-0010-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-014-0010-0

Keywords

Navigation