Skip to main content
Log in

Sharp Morawetz estimates

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We prove sharp Morawetz estimates — global in time with a singular weight in the spatial variables — for the linear wave, Klein-Gordon, and Schrödinger equations, for which we can characterise the maximisers. We also prove refined inequalities with respect to the angular integrability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ben-Artzi and S. Klainerman, Decay and regularity for the Schrödinger equation, J. Anal. Math. 58 (1992), 25–37.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bennett, N. Bez, A. Carbery, and D. Hundertmark, Heat-flow monotonicity of Strichartz norms, Anal. PDE 2 (2009), 147–158.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Bez and K. M. Rogers, A sharp Strichartz estimate for the wave equation with data in the energy space, J. Eur. Math. Soc. 15 (2013), 805–823.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Bez and M. Sugimoto, Optimal constants and extremisers for some smoothing estimates, arXiv:1206.5110 [math. AP].

  5. A. Bulut, Maximizers for the Strichartz inequalities for the wave equation, Differential Integral Equations 23 (2010), 1035–1072.

    MathSciNet  MATH  Google Scholar 

  6. E. Carneiro, A sharp inequality for the Strichartz norm, Int. Math. Res. Not. IMRN 2009, no. 16, 3127–3145.

  7. Y. Cho, S. Lee, and T. Ozawa, On Hartree equations with derivatives, Nonlinear Anal. 74 (2011), 2094–2108.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Constantin and J. C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), 413–439.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Cowling, L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, The Hardy uncertainty principle revisited, Indiana U. Math. J. 59 (2010), 2007–2025.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. D’Ancona and R. Luca’, Stein-Weiss and Caffarelli-Kohn-Nirenberg inequalties with angular integrability, J. Math. Anal. Appl. 388 (2012), 1061–1079.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Duyckaerts, F. Merle, and S. Roudenko, Maximizers for the Strichartz norm for small solutions of mass-critical NLS, Ann. Sc. Norm. Super. Pisa Cl. Sci.(5) 10 (2011), 427–476.

    MathSciNet  MATH  Google Scholar 

  12. L. Fanelli, L. Vega, and N. Visciglia, On the existence of maximizers for a family of restriction theorems, Bull. Lond. Math. Soc. 43 (2011), 811–817.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Fanelli, L. Vega, and N. Visciglia, Existence of maximizers for Sobolev-Strichartz inequalities, Adv. Math. 229 (2012), 1912–1923.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. 9 (2007), 739–774.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. L. Frank and E. H. Lieb, A new rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Spectral Theory, Function Spaces, and Inequalities, Birkhäuser/Springer Basel AG, 2012, pp. 55–67.

  16. T. Hoshiro, On weighted L 2 estimates of solutions to wave equations, J. Anal. Math. 72 (1997), 127–140.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Hundertmark and V. Zharnitsky, On sharp Strichartz inequalities in low dimensions, Int.Math. Res. Not. 2006, Art. ID 34080.

  18. T. Kato and K. Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), 481–496.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Kunze, On the existence of a maximizer for the Strichartz inequality, Comm.Math. Phys. 243 (2003), 137–162.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Annals of Math. (2) 118 (1983), 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. E. Lin and W. A. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal. 30 (1978), 245–263.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy. Soc. Ser. A 306 (1968), 291–296.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations, J. Funct. Anal. 164 (1999), 340–355.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Ramos, A refinement of the Strichartz inequality for the wave equation with applications, Adv. Math. 230 (2012), 649–698.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Shao, Maximizers for the Strichartz and the Sobolev-Strichartz inequalities for the Schrödinger equation, Electron. J. Differential Equations 2009, No. 3.

  26. B. Simon, Best constants in some operator smoothness estimates, J. Funct. Anal. 107 (1992), 66–71.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Sjölin, Regularity of solutions to the Schrödinger equation, DukeMath. J. 55 (1987), 699–715.

    Article  MATH  Google Scholar 

  28. E.M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J.Math. Mech. 7 (1958), 503–514.

    MathSciNet  MATH  Google Scholar 

  29. R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705–714.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Sugimoto, Global smoothing properties of generalized Schrödinger equations, J. Anal. Math. 76 (1998), 191–204.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Sugimoto, A smoothing property of Schrödinger equations along the sphere, J. Anal. Math. 89 (2003), 15–30.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874–878.

    MathSciNet  MATH  Google Scholar 

  33. L. Vega and N. Visciglia, On the local smoothing for the Schrödinger equation, Proc. Amer. Math. Soc. 135 (2007), 119–128.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Vega and N. Visciglia, On the equipartition of energy for the critical NLW, J. Funct. Anal. 255 (2008), 726–754.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. C. Vilela, Regularity of solutions to the free Schrödinger equation with radial initial data, Illinois J. Math. 45 (2001), 361–370.

    MathSciNet  MATH  Google Scholar 

  36. B. G. Walther, Regularity, decay, and best constants for dispersive equations, J. Funct. Anal. 189 (2002), 325–335.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Watanabe, Smooth perturbations of the self-adjoint operator \({\left| \Delta \right|^{\alpha /2}}\), Tokyo J.Math. 14 (1991), 239–250.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Ozawa.

Additional information

Supported by the JSPS grant 11133 (Japan), the ERC grant 277778 (Europe), and the MINECO grants MTM2010-16518 and SEV-2011-0087 (Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozawa, T., Rogers, K.M. Sharp Morawetz estimates. JAMA 121, 163–175 (2013). https://doi.org/10.1007/s11854-013-0031-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-013-0031-0

Keywords

Navigation