Skip to main content
Log in

Method of analytic continuation for the inverse spherical mean transform in constant curvature spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The following problem arises in thermoacoustic tomography and has intimate connection with PDEs and integral geometry. Reconstruct a function f supported in an n-dimensional ball B given the spherical means of f over all geodesic spheres centered on the boundary of B. We propose a new approach to this problem, which yields explicit reconstruction formulas in arbitrary constant curvature space, including euclidean space ℝn, the n-dimensional sphere, and hyperbolic space. The main idea is analytic continuation of the corresponding operator families. The results are applied to inverse problems for a large class of Euler-Poisson-Darboux equations in constant curvature spaces of arbitrary dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Agranovsky, D. Finch, and P. Kuchment, Range conditions for a spherical mean transform, Inverse Probl. Imaging 3 (2009), 373–382.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Agranovsky, P. Kuchment, and L. Kunyansky, On reconstruction formulas and algorithms for the thermoacoustic tomography, in Photoacoustic Imaging and Spectroscopy, CRC Press, 2009, pp. 89–102.

  3. M. Agranovsky, P. Kuchment, and E. T. Quinto, Range descriptions for the spherical mean Radon transform, J. Funct. Anal. 248 (2007), 344–386.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Agranovsky and E. T. Quinto, Injectivity of the spherical mean operator and related problems, in Complex Analysis, Harmonic Analysis and Applications, Longman, Harlow, 1996, pp. 12–36.

    Google Scholar 

  5. M. Agranovsky, and E. T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal. 139 (1996), 383–414.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Ambartsoumian and P. Kuchment, A range description for the planar circular Radon transform, SIAM J. Math. Anal. 38 (2006), 681–692.

    Article  MathSciNet  Google Scholar 

  7. Y. A. Antipov and B. Rubin, A generalization of the Mader-Helgason inversion formulas for Radon transforms, Trans. Amer. Math. Soc. 364 (2012), 6479–6493.

    Article  MathSciNet  Google Scholar 

  8. D. W. Bresters, On a generalized Euler-Poisson-Darboux equation, SIAM J. Math. Anal. 9 (1978), 924–934.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. W. Carroll, Singular Cauchy problems in symmetric spaces, J. Math. Anal. Appl. 56 (1976), 41–54.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press, New York, NY, 1976.

    Google Scholar 

  11. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Interscience Publishers, New York, NY, 1989.

    Book  Google Scholar 

  12. S. R. Deans, The Radon Transform and Some of its Applications, Reprint of the 1983 edition, Dover Publications, Inc., Mineola, New York, 2007.

    MATH  Google Scholar 

  13. L. Ehrenpreis, The Universality of the Radon Transform, with an appendix by Peter Kuchment and Eric Todd Quinto, Oxford University Press, New York, 2003.

    Google Scholar 

  14. C. L. Epstein, Introduction to the Mathematics of Medical Imaging, 2nd edition, SIAM, Phildelphia, PA, 2008.

    Book  MATH  Google Scholar 

  15. C. L. Epstein and B. Kleiner, Spherical means in annular regions, Comm. Pure Appl. Math. 46 (1993), 441–451.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Erdélyi, W. Magnus, F, Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vols. I and II, McGraw-Hill, New York, 1953.

    Google Scholar 

  17. R. Estrada and R. P. Kanwal, Singular Integral Equations, Birkhäuser, Boston, 2000.

    Book  MATH  Google Scholar 

  18. F. Filbir, R. Hielscher, and W. R. Madych, Reconstruction from circular and spherical mean data, Appl. Comput. Harmon. Anal. 29 (2010), 111–120.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Finch, M. Haltmeier, and Rakesh, Inversion of spherical means and the wave equation in even dimensions, SIAM J. Appl. Math. 68 (2007), 392–412.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Finch, S. K. Patch, and Rakesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal. 35 (2004), 1213–1240.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Finch, and Rakesh, The range of the spherical mean value operator for functions supported in a ball, Inverse Problems 22 (2006), 923–938.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Finch, and Rakesh, The spherical mean value operator with centers on a sphere, Inverse Problems 23 (2007), S37–S49.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Finch, and Rakesh, Recovering a function from its spherical mean values in two and three dimensions, in Photoacoustic Imaging and Spectroscopy, CRC Press, 2009, pp. 77–88.

  24. B. A. Fusaro, A correspondence principle for the Euler-Poisson-Darboux (EPD) equation in harmonic space, Glasnik Matem. Ser. III 1(21) (1966), 99–101.

    MathSciNet  Google Scholar 

  25. F. D. Gakhov, Boundary Value Problems, Dover Publications, 1990.

  26. I. M. Gel’fand, S. G. Gindikin, and M. I. Graev, Selected Topics in Integral Geometry, Amer. Math. Soc. Providence, RI, 2003.

    Google Scholar 

  27. I. M. Gel’fand and G. E. Shilov, Generalized Functions, 1. Properties and Operations, Academic Press, New York-London, 1964.

    Google Scholar 

  28. S. Gindikin, Integral geometry on real quadrics, in Lie Groups and Lie Algebras: E. B. Dynkin’s Seminar, Amer. Math. Soc. Transl. Ser. 2, 169, Amer. Math. Soc., Providence, RI, 1995, pp. 23–31.

    Google Scholar 

  29. S. Gindikin, J. Reeds, and L. Shepp, Spherical tomography and spherical integral geometry, in Tomography, Impedance Imaging, and Integral Geometry, Amer. Math. Soc. Providence, RI, 1994, pp. 83–92.

    Google Scholar 

  30. S. Helgason, Integral Geometry and Radon Transforms, Springer, New York, 2011.

    Book  MATH  Google Scholar 

  31. Y. Hristova, P. Kuchment, and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media, Inverse Problems 24 (2008), no. 5, 055006, 25 pp.

  32. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, reprint of the 1955 original, Dover Publications, Mineola, NY, 2004.

    MATH  Google Scholar 

  33. I. A. Kipriyanov and L. A. Ivanov, Euler-Poisson-Darboux equations in Riemannian space, Dokl. Akad. Nauk SSSR 260 (1981), 790–794.

    MathSciNet  Google Scholar 

  34. I. A. Kipriyanov and L. A. Ivanov, The Cauchy problem for the Euler-Poisson-Darboux equation in a homogeneous symmetric Riemannian space. I, Proc. Steklov Inst. Math. 1 (1987), 159–168.

    Google Scholar 

  35. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, Photoacoustic ultrasound (PAUS)-reconstruction tomography, Med. Phys. 22 (1995), 1605–1609.

    Article  Google Scholar 

  36. P. Kuchment, Generalized transforms of Radon type and their applications, in The Radon Transform, Inverse Problems, and Tomography, Amer. Math. Soc., Providence, RI, 2006, pp. 67–91.

    Chapter  Google Scholar 

  37. P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography, European J. Appl. Math. 19 (2008), 191–224.

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Kuchment, and E. T. Quinto, Some problems of integral geometry arising in tomography, in The Universality of the Radon Transform, Oxford University Press, New York, 2003, Chapter XI.

    Google Scholar 

  39. L. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform, Inverse Problems 23 (2007), 373–383.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Kunyansky, Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra Inverse Problems 27 (2011), 025012.

    Article  MathSciNet  Google Scholar 

  41. P. D. Lax and R. S. Phillips, An example of Huygens’ principle, Comm. Pure Appl. Math. 31 (1978), 415–421.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. S. Lowndes, A generalisation of the Erdélyi-Kober operators, Proc. Edinburgh Math. Soc. (2) 17 (1970/1971), 139–148.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. S. Lowndes, On some generalisations of the Riemann-Liouville and Weyl fractional integrals and their applications, Glasgow Math. J. 22 (1981), 173–180.

    Article  MathSciNet  MATH  Google Scholar 

  44. F. Natterer, The Mathematics of Computerized Tomography, Wiley, New York, 1986.

    MATH  Google Scholar 

  45. E. K. Narayanan and Rakesh, Spherical means with centers on a hyperplane in even dimensions, Inverse Problems 26 (2010), no. 3, 035014, 12 pp.

    Article  MathSciNet  Google Scholar 

  46. L. V. Nguyen, A family of inversion formulas in thermoacoustic tomography, Inverse Probl. Imaging, 3 (2009), 649–675.

    Article  MathSciNet  MATH  Google Scholar 

  47. L. V. Nguyen, Range description for a spherical mean transform on spaces of constant curvatures, arXiv:1107.1746v2.

  48. M. N. Olevskii, Quelques théorems de la moyenne dans les espaces `a courbure constante, C. R. (Dokl.) Acad Sci URSS 45 (1944), 95–98.

    Google Scholar 

  49. M. N. Olevskii, On the equation APu(P, t) = {ie655-1} (A P a linear operator) and the solution of the Cauchy problem for the generalized equation of Euler-Darboux, Dokl. Nauk SSSR (N.S.) 93 (1953), 975–978.

    MathSciNet  Google Scholar 

  50. M. N. Olevskii, On a generalization of the Pizetti formula in spaces of constant curvature and some mean-value theorems, Selecta Math. 13 (1994), 247–253.

    MathSciNet  Google Scholar 

  51. A. A. Oraevsky and A. A. Karabutov, Optoacoustic tomography, Chapter 34 in Biomedical Photonics Handbook, CRC Press, Boca Raton, Fla, 2003.

    Google Scholar 

  52. V. Palamodov, Reconstructive Integral Geometry, Birkhäuser Verlag, Basel, 2004.

    Book  MATH  Google Scholar 

  53. V. Palamodov, Remarks on the general Funk transform and thermoacoustic tomography, Inverse Probl. Imaging 4 (2010), 693–702.

    Article  MathSciNet  MATH  Google Scholar 

  54. D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography, Problemy Peredachi Informatsii 40 (2004), no. 3, 81–107; translation in Probl. Inf. Transm. 40 (2004), no. 3, 254–278.

    MathSciNet  Google Scholar 

  55. D. A. Popov and D. V. Sushko, A parametrix for a problem of optical-acoustic tomography, Dokl. Akad. Nauk 382 (2002), no. 2, 162–164.

    MathSciNet  Google Scholar 

  56. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series: Elementary Functions, Gordon and Breach Sci. Publ., New York-London, 1986.

    MATH  Google Scholar 

  57. B. Rubin, Fractional Integrals and Potentials, Longman, Harlow, 1996.

    MATH  Google Scholar 

  58. B. Rubin, Generalized Minkowski-Funk transforms and small denominators on the sphere, Fract. Calc. Appl. Anal. 3 (2000), 177–203.

    MathSciNet  MATH  Google Scholar 

  59. B. Rubin, Inversion formulae for the spherical mean in odd dimensions and the Euler-Poisson-Darboux equation, Inverse Problems 24 (2008) 025021, 10pp.

    Google Scholar 

  60. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.

    MATH  Google Scholar 

  61. R. K. Srivastava, Coxeter system of lines are sets of injectivity for twisted spherical means on C, arXiv:1103.4571v7 [math. FA].

  62. E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillation Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

    Google Scholar 

  63. R. S. Strichartz, Radon inversion-variations on a theme, Amer. Math. Monthly, 89 (1982), 377–384, 420–423.

    Article  MathSciNet  MATH  Google Scholar 

  64. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd edition, Clarendon Press, Oxford, 1948.

    Google Scholar 

  65. N. Ja. Vilenkin, A. U. Klimyk, Representation of Lie groups and Special Functions, Vol. 2, Kluwer Acad. Publ., Dordrecht, 1993.

    Book  MATH  Google Scholar 

  66. L. Wang, ed., Photoacoustic Imaging and Spectroscopy, CRC Press, 2009.

  67. M. Xu and L. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography, Phys. Rev. E (3) 71 (2005), no. 1, 16706, 7 pages.

    Article  Google Scholar 

  68. L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), 161–175.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri A. Antipov.

Additional information

Supported by the NSF grant DMS-0707724.

Supported by the NSF grant PHYS-0968448.

Supported in part by the NSF grant DMS-0556157 and the Louisiana EPSCoR program, and sponsored by NSF, the Board of Regents Support Fund, and the Hebrew University of Jerusalem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antipov, Y.A., Estrada, R. & Rubin, B. Method of analytic continuation for the inverse spherical mean transform in constant curvature spaces. JAMA 118, 623–656 (2012). https://doi.org/10.1007/s11854-012-0046-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0046-y

Keywords

Navigation