Skip to main content
Log in

Existence and regularity of positive solutions of elliptic equations of Schrödinger type

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We prove the existence of positive solutions with optimal local regularity of the homogeneous equation of Schrödinger type

$$ - {\rm{div}}(A\nabla u) - \sigma u = 0{\rm{ in }}\Omega $$

for an arbitrary open Ω ⊆ ℝn under only a form-boundedness assumption on σD′(Ω) and ellipticity assumption on A ∈ L (Ω)n×n. We demonstrate that there is a two-way correspondence between form boundedness and existence of positive solutions of this equation as well as weak solutions of the equation with quadratic nonlinearity in the gradient

$$ - {\rm{div}}(A\nabla u) = (A\nabla v) \cdot \nabla v + \sigma {\rm{ in }}\Omega $$

As a consequence, we obtain necessary and sufficient conditions for both formboundedness (with a sharp upper form bound) and positivity of the quadratic form of the Schrödinger type operator H = −div(A∇·)-σ with arbitrary distributional potential σD′(Ω), and give examples clarifying the relationship between these two properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, Methods of Functional Analysis and Theory of Elliptic Equations, Liguori, Naples, 1983, pp. 19–52.

  2. M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), 209–273.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Ancona, On strong barriers and an inequality of Hardy for domains inn, J. London Math. Soc. (2) 34 (1986), 274–290.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Berestycki, L. Nirenberg, and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), 47–92.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Boccardo, T. Gallouët, and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 539–551.

    MATH  Google Scholar 

  6. H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. (9) 58 (1979), 137–151.

    MathSciNet  MATH  Google Scholar 

  7. H. Brézis and M. Marcus, Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 217–237.

    MathSciNet  MATH  Google Scholar 

  8. F. Chiarenza, E. Fabes, and N. Garofalo, Harnack’s inequality for Schrödinger operators and the continuity of solutions, Proc. Amer. Math. Soc. 98 (1986), 415–425.

    MathSciNet  MATH  Google Scholar 

  9. K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation, Springer, Berlin-Heidelberg, 1995.

    Book  MATH  Google Scholar 

  10. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer, Berlin, 1987.

    MATH  Google Scholar 

  11. J. Dávila and L. Dupaigne, Comparison results for PDEs with a singular potential, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 61–83.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Dupaigne and G. Nedev, Semilinear elliptic PDE’s with a singular potential, Adv. Diff. Equations 7 (2002), 973–1002.

    MathSciNet  MATH  Google Scholar 

  13. L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1990.

    MATH  Google Scholar 

  14. V. Ferone and F. Murat, Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, Équations aux dérivées partielles et applications, Gauthier-Villars, Elsevier, Paris, 1998, pp. 497–515.

  15. V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. 42 (2000), 1309–1326.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. J. Fitzsimmons, Hardy’s inequality for Dirichlet forms, J. Math. Anal. Appl. 250 (2000), 548–560.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Frazier and I. E. Verbitsky, Global Green’s function estimates, Around the Research of Vladimir Maz’ya III, Springer, 2010, pp. 105–152.

  18. M. Frazier, F. Nazarov, and I. E. Verbitsky, Global estimates for kernels of Neumann series, Green’s functions, and the conditional gauge, preprint (2012).

  19. E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, River Edge, NJ, 2003.

    Book  MATH  Google Scholar 

  20. A. Hamid and M-F. Bidaut-Véron, On the connection between two quasilinear elliptic problems with source terms of order 0 or 1, Commun. Contemp. Math. 12 (2010), 727–788.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Hartman, Ordinary Differential Equations, second ed., Birkhäuser, Boston, MA, 1982.

    MATH  Google Scholar 

  22. E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64, (1948), 234–252.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover Publ., 2006 (unabridged republ. of 1993 ed., Oxford University Press).

  24. B. J. Jaye, V. G. Maz’ya, and I. E. Verbitsky, Quasilinear elliptic equations and weighted Sobolev-Poincaré inequalities with distributional weights, Adv. Math. 232 (2013), 513–542.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. J. Jaye and I. E. Verbitsky, The fundamental solution of nonlinear operators with natural growth terms, Ann. Scuola Norm. Sup. Pisa Cl. Sci, (5), to appear.

  26. T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 591–613.

    MathSciNet  MATH  Google Scholar 

  27. E. Lieb and M. Loss, Analysis, second ed., Amer. Math. Soc., Providence, RI, 2001.

    MATH  Google Scholar 

  28. J. Malý and W. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations. Amer. Math. Soc., Providence, RI, 1997.

    MATH  Google Scholar 

  29. M. Marcus and I. Shafrir, An eigenvalue problem related to Hardy’s Lp inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 581–604.

    MathSciNet  MATH  Google Scholar 

  30. V. G. Maz’ya, Weak solutions of the Dirichlet and Neumann problems, Trudy Moskov. Mat. Obsch. 20 (1969) 137–172 (Russian); English transl.: Trans. Moscow Math. Soc. 20 (1969), 135–172.

    MATH  Google Scholar 

  31. V. G. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Heidelberg, 2011.

    MATH  Google Scholar 

  32. V. G. Maz’ya and T. O. Shaposhnikova, Theory of Sobolev Multipliers: with Applications to Differential and Integral Operators, Springer, Heidelberg, 2009.

    MATH  Google Scholar 

  33. V. G. Maz’ya and I. E. Verbitsky, The Schrödinger operator on the energy space: boundedness and compactness criteria, Acta Math. 188 (2002), 263–302.

    Article  MathSciNet  MATH  Google Scholar 

  34. V. G. Maz’ya and I. E. Verbitsky, Boundedness and compactness criteria for the onedimensional Schrödinger operator, Function Spaces, Interpolation Theory and Related Topics, de Gruyter, Berlin, 2002, pp. 369–382.

    Google Scholar 

  35. V. G. Maz’ya and I. E. Verbitsky, Form boundedness of the general second order differential operator, Comm. Pure Appl. Math. 59 (2006), 1286–1329.

    Article  MathSciNet  Google Scholar 

  36. G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci (5) 6 (2007), 195–261.

    MathSciNet  MATH  Google Scholar 

  37. J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457–468.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Murata, Structure of positive solutions to (−Δ + V)u = 0 inn, Duke Math. J. 53 (1986), 869–943.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Murata, Martin boundaries of elliptic skew products, semismall perturbations, and fundamental solutions of parabolic equations, J. Funct. Anal. 194 (2002), 53–141.

    MathSciNet  MATH  Google Scholar 

  40. R. D. Nussbaum and Y. Pinchover, On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications, J. Anal. Math. 59 (1992), 161–177.

    Article  MathSciNet  MATH  Google Scholar 

  41. Y. Pinchover, Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations, Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Amer. Math. Soc., Providence, RI, 2007, pp. 329–355.

    Chapter  Google Scholar 

  42. A. Poliakovsky and I. Shafrir, Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Amer. Math. Soc. 133 (2005), 2549–2557.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. V. Rozenblum, M. A. Shubin, and M. Z. Solomyak, Spectral Theory of Differential Operators, Springer, Berlin-Heidelberg, 1994.

    Google Scholar 

  44. G. Rozenblum and M. Solomyak, On principal eigenvalues for indefinite problems in Euclidean space, Math. Nachr. 192 (1998), 205–223.

    Article  MathSciNet  MATH  Google Scholar 

  45. I. Shafrir, Asymptotic behaviour of minimizing sequences for Hardy’s inequality, Commun. Contemp. Math. 2 (2000), 151–189.

    MathSciNet  MATH  Google Scholar 

  46. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  47. R. S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, World Scientific Publ., River Edge, NJ, 2003.

    Book  MATH  Google Scholar 

  48. A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight, Studia Math. 135 (1999), 191–201.

    MathSciNet  MATH  Google Scholar 

  49. N. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 265–308.

    MathSciNet  MATH  Google Scholar 

  50. I. E. Verbitsky, Nonlinear potentials and trace inequalities, The Maz’ya Anniversary Collection, Vol. 2, Birkhäuser Verlag, Basel, 1999, pp. 323–343.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Jaye.

Additional information

The first and third authors are supported in part by NSF grant DMS-0901550.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaye, B.J., Maz’ya, V.G. & Verbitsky, I.E. Existence and regularity of positive solutions of elliptic equations of Schrödinger type. JAMA 118, 577–621 (2012). https://doi.org/10.1007/s11854-012-0045-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0045-z

Keywords

Navigation