Skip to main content
Log in

A joinings classification and a special case of Raghunathan’s conjecture in positive characteristic (with an appendix by Kevin Wortman)

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We prove the classification of joinings for maximal horospherical subgroups acting on homogeneous spaces without any restriction on the characteristic. Using the linearization technique, we deduce a special case of Raghunathan’s orbit closure conjecture. In the appendix, quasi-isometries of higher rank lattices in semisimple algebraic groups over fields of positive characteristic are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Borel, Linear Algebraic Groups, 2nd ed., Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  2. A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–151.

    Article  MathSciNet  Google Scholar 

  3. A. Borel, T. A. Springer, Rationality properties of linear algebraic groups, Tôhoku Math. J. 20 (1968), 443–497.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. N. Bernstein and A. V. Zelevinski, Representation of the group GL(n, F) where F is a non-archimedean local field, Russ. Math. Surv. 313 (1976), 1–68.

    Article  Google Scholar 

  5. K.-U. Bux and K. Wortman, Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups, Invent. Math. 185 (2011), 395–419.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. Soviet Math. 16, Part 1, Amer. Math. Soc., Providence, RI, 1993, pp. 91–137.

    Google Scholar 

  7. M. Einsiedler and A. Ghosh, Rigidity of measures invariant under semisimple groups in positive characteristic, Proc. London Math. Soc. (3) 100 (2010), 249–268.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998), 321–361.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Eskin, S. Mozes, and N. Shah, Unipotent flows and counting lattice points on homogeneous varieties Ann. of Math (2) 143 (1996), 253–299.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Farb, The quasi-isometry classification of lattices in semisimple Lie groups, Math. Res. Lett. 4 (1997), 705–717.

    MathSciNet  MATH  Google Scholar 

  11. B. Farb and R. Schwartz, The large-scale geometry of Hilbert modular groups, J. Differential Geom. 44 (1996), 435–478.

    MathSciNet  MATH  Google Scholar 

  12. A. Ghosh, Metric Diophantine approximation over a local field of positive characteristic, J. Number Theory 124 (2007), 454–469.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. de Guzman, Real Variable Methods in Fourier Analysis, North-Holland Publishing Company, Amsterdam, 1981.

    MATH  Google Scholar 

  14. B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2) 148 (1998), 339–360.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), 1–87.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Kleinbock and G. Tomanov, Flows on S-arithmetic homogenous spaces and application to metric Diophantine approximation, Comment. Math. Helv. 82 (2007), 519–581.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. A. Margulis, On the action of unipotent groups in the space of lattices, Lie Groups and their Representations (Proc. Summer School, Bolyai Janos Math. Soc., Budapest, 1971), Halsted, New York, 1975, pp. 365–370.

    Google Scholar 

  19. G. A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, Dynamical Systems and Ergodic Theory (Warsaw, 1986), PWN, Warsaw, 1989, pp. 399–409.

    Google Scholar 

  20. G. A. Margulis, Discrete subgroups and ergodic theory, Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 377–398.

    Google Scholar 

  21. G. A. Margulis, Orbits of group actions and values of quadratic forms at integral points, Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II, Weizmann Science Press, Jerusalem, 1990, pp. 127–151.

  22. G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  23. G. A. Margulis Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory, Proceedings of the International Congress of Mathematicians, vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, pp. 193–215.

    Google Scholar 

  24. G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994), 347–392.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Mohammadi, Measures invariant under horospherical subgroups in positive characteristic, J. Mod. Dyn. 5 (2011), 237–254.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Prasad, Strong approximation for semi-simple groups over function fields, Ann. of Math. (2) 105 (1977), 553–572.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Ratner, Horocycle flows, joining and rigidity of products, Ann. of Math. (2) 118 (1983), 277–313.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups, Invent. Math. 101 (1990), 449–482.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Ratner, On measure rigidity of unipotent subgroups of semi-simple groups, Acta Math. 165 (1990), 229–309.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Ratner, Raghannuthan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235–280.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1992), 545–607.

    MathSciNet  Google Scholar 

  34. M. Ratner, Raghunathan’s conjectures for Cartesian products of real and p-adic Lie groups, Duke Math. J. 77 (1995), 275–382.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 133–168.

    Article  MATH  Google Scholar 

  36. R. Schwartz, Quasi-isometric rigidity and Diophantine approximation, Acta Math. 177 (1996), 75–112.

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Shah, Limit distributions of polynomial trajectories on homogeneous spaces, Duke Math. J. 75 (1994), 711–732.

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Shalom, Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan’s property (T), Trans. Amer. Math. Soc. 351 (1999), 3387–3412.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Taback, Quasi-isometric rigidity for PSL 2(ℤ[1/p]), Duke Math. J. 101 (2000), 335–357.

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Tomanov, Orbits on homogeneous spaces of arithmetic origin and approximations, Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama-Kyoto (1997), Math. Soc. Japan, Tokyo, 2000, pp. 265–297.

    Google Scholar 

  41. P. Tukia, Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group, Acta Math. 154 (1985), 153–193.

    Article  MathSciNet  MATH  Google Scholar 

  42. K. Wortman, Quasi-isometric rigidity of higher rank S-arithmetic lattices, Geom. Topol. 11 (2007), 995–1048.

    Article  MathSciNet  MATH  Google Scholar 

  43. K. Wortman, Quasi-isometries of rank one S-arithmetic lattices, Groups Geom. Dyn. 5 (2011), 787–803.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author was partially supported by NSF DMS-0802587.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einsiedler, M., Mohammadi, A. A joinings classification and a special case of Raghunathan’s conjecture in positive characteristic (with an appendix by Kevin Wortman). JAMA 116, 299–334 (2012). https://doi.org/10.1007/s11854-012-0008-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-012-0008-4

Keywords

Navigation