C. Avenancio-Leon and R. S. Strichartz, Local behavior of harmonic functions on the Sierpinski gasket, Illinois J. Math. 51 (2007), 1061–1075. MR 2417415
MATH
MathSciNet
Google Scholar
M. T. Barlow and J. Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. London Math. Soc. (2) 56 (1997), 320–332. MR 1489140 (99b:35162)
MATH
Article
MathSciNet
Google Scholar
O. Ben-Bassat, R. S. Strichartz, and A. Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal. 166 (1999), 197–217. MR 1707752 (2001e:31016)
MATH
Article
MathSciNet
Google Scholar
N. Ben-Gal, A. Shaw-Krauss, R. S. Strichartz, and C. Young, Calculus on the Sierpinski gasket. II. Point singularities, eigenfunctions, and normal derivatives of the heat kernel, Trans. Amer. Math. Soc. 358 (2006), 3883–3936 (electronic). MR 2219003 (2007h:28009)
MATH
Article
MathSciNet
Google Scholar
N. Ben-Gal, A. Shaw-Krauss, R. S. Strichartz, and C. Young, Calculus on the Sierpinski gasket. II. Point singularities, eigenfunctions, and normal derivatives of the heat kernel, Trans. Amer. Math. Soc. 358 (2006), 3883–3936 (electronic). MR 2219003
MATH
Article
MathSciNet
Google Scholar
B. Bockelman and R. S. Strichartz, Partial differential equations on products of Sierpinski gaskets, Indiana Univ. Math. J. 56 (2007), 1361–1375. MR 2333476 (2008h:31012)
MATH
Article
MathSciNet
Google Scholar
P. J. Fitzsimmons, B. M. Hambly, and T. Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys. 165 (1994), 595–620. MR 1301625 (95j:60122)
MATH
Article
MathSciNet
Google Scholar
H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist 31 (1960), 457–469. MR 0121828 (22 #12558)
MATH
Article
MathSciNet
Google Scholar
B. M. Hambly and T. Kumagai, Transition density estimates for diffusion processes on post critically finite self-similar fractals, Proc. London Math. Soc. (3) 78 (1999), 431–458. MR 1665249 (99m:60118)
MATH
Article
MathSciNet
Google Scholar
B.M. Hambly, V. Metz, and A. Teplyaev, Self-similar energies on post-critically finite self-similar fractals, J. London Math. Soc. (2) 74 (2006), 93–112. MR 2254554 (2007i:31011)
MATH
Article
MathSciNet
Google Scholar
L. Hörmander, The Analysis of Linear Partial Differential Operators. II Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 1983. MR 705278 (85g:35002b)
MATH
Google Scholar
M. Ionescu, E. P. J. Pearse, Huo-Jun Ruan, L. G. Rogers, and Robert S. Strichartz, The resolvent kernel for pcf self-similar fractals, Trans. Amer. Math. Soc. 362 (2010), 4451–4479. MR 2608413
MATH
Article
MathSciNet
Google Scholar
J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001. MR 1840042 (2002c:28015)
MATH
Book
Google Scholar
J. Kigami, Harmonic analysis for resistance forms, J. Funct. Anal. 204 (2003), 399–444. MR 2017320 (2004m:31010)
MATH
Article
MathSciNet
Google Scholar
T. Kumagai, Short time asymptotic behaviour and large deviation for Brownian motion on some affine nested fractals, Publ. Res. Inst. Math. Sci. 33 (1997), 223–240. MR 1442498 (98k:60130)
MATH
Article
MathSciNet
Google Scholar
S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci. 25 (1989), 659–680. MR 1025071 (91m:60142)
MATH
Article
MathSciNet
Google Scholar
T. Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 83 (1990), no. 420, iv+128 pp. MR 988082 (90k:60157)
R. Meyers, R. S. Strichartz, and A. Teplyaev, Dirichlet forms on the Sierpiński gasket, Pacific J. Math. 217 (2004), 149–174. MR 2105771 (2005k:31028)
MATH
Article
MathSciNet
Google Scholar
J. Needleman, R. S. Strichartz, A. Teplyaev, and Po-Lam Yung, Calculus on the Sierpinski gasket. I. Polynomials, exponentials and power series, J. Funct. Anal. 215 (2004), 290–340. MR 2150975
MATH
Article
MathSciNet
Google Scholar
K. A. Okoudjou, L. G. Rogers, and R. S. Strichartz, Generalized eigenfunctions and a Borel theorem on the Sierpinski gasket, Canad. Math. Bull. 52 (2009), 105–116.
MATH
Article
MathSciNet
Google Scholar
R. Peirone, Convergence and uniqueness problems for Dirichlet forms on fractals, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 3 (2000), 431–460. MR 1769995 (2001i:31016)
MATH
MathSciNet
Google Scholar
R. Peirone, Convergence of Dirichlet forms on fractals, in Topics on Concentration Phenomena and Problems with Multiple Scales, Lecture Notes Unione Mat. Ital., Vol. 2, Springer, Berlin, 2006, pp. 139–188. MR 2267882 (2008b:28013)
Chapter
Google Scholar
R. Peirone, Existence of eigenforms on fractals with three vertices, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 1073–1080. MR 2359927
MATH
Article
MathSciNet
Google Scholar
R. Peirone, Uniqueness of eigenforms on nicely separated fractals, in Analysis on Graphs and its Applications, Amer. Math. Soc., Providence, RI, 2008, pp. 231–241.
Google Scholar
A. Pelander, Solvability of differential equations on open subsets of the Sierpiński gasket, J. Analy. Math. 102 (2007), 359–369. MR 2346562 (2009d:31020)
MATH
Article
MathSciNet
Google Scholar
A. Pelander and A. Teplyaev, Infinite dimensional i.f.s. and smooth functions on the Sierpiński gasket, Indiana Univ. Math. J. 56 (2007), 1377–1404. MR 2333477
MATH
Article
MathSciNet
Google Scholar
A. Pelander and A. Teplyaev, Products of random matrices and derivatives on p.c.f. fractals, J. Funct. Anal. 254 (2008), 1188–1216. MR 2386935
MATH
Article
MathSciNet
Google Scholar
L. G. Rogers, R. S. Strichartz, and A. Teplyaev, Smooth bumps, a Borel theorem and partitions of smooth functions on P.C.F. fractals, Trans. Amer. Math. Soc. 361 (2009), 1765–1790. MR 2465816
MATH
Article
MathSciNet
Google Scholar
W. Rudin, Functional Analysis, second edition, McGraw-Hill Inc., New York, 1991. MR 1157815 (92k:46001)
MATH
Google Scholar
C. Sabot, Existence and uniqueness of diffusions on finitely ramified self-similar fractals, Ann. Sci. École Norm. Sup. (4) 30 (1997), 605–673. MR 1474807 (98h:60118)
MATH
MathSciNet
Google Scholar
A. Sikora, Multivariable spectral multipliers and quasielliptic operators, Indiana Univ. Math. J. 58 (2009), 317–334. MR 2504414 (2010d:47068)
MATH
Article
MathSciNet
Google Scholar
R. S. Strichartz, Taylor approximations on Sierpinski gasket type fractals, J. Funct. Anal. 174 (2000), 76–127. MR 1761364 (2001i:31018)
MATH
Article
MathSciNet
Google Scholar
R. S. Strichartz, Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc. 355 (2003), 4019–4043 (electronic). MR 1990573 (2004b:28013)
MATH
Article
MathSciNet
Google Scholar
R. S. Strichartz, Function spaces on fractals, J. Funct. Anal. 198 (2003), 43–83. MR 1962353 (2003m:46058)
MATH
Article
MathSciNet
Google Scholar
R. S. Strichartz, Analysis on products of fractals, Trans. Amer. Math. Soc. 357 (2005), 571–615 (electronic). MR 2095624 (2005m:31016)
MATH
Article
MathSciNet
Google Scholar
R. S. Strichartz, Solvability for differential equations on fractals, J. Anal. Math. 96 (2005), 247–267. MR 2177187 (2006j:35092)
MATH
Article
MathSciNet
Google Scholar
R. S. Strichartz, Differential Equations on Fractals, Princeton University Press, Princeton, NJ, 2006. MR 2246975 (2007f:35003)
MATH
Google Scholar
A. Teplyaev, Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal. 159 (1998), 537–567. MR 1658094 (99j:35153)
MATH
Article
MathSciNet
Google Scholar
A. Teplyaev, Gradients on fractals, J. Funct. Anal. 174 (2000), 128–154. MR 1761365 (2001h:31012)
MATH
Article
MathSciNet
Google Scholar