Skip to main content
Log in

Cluster sets for sobolev functions and quasiminimizers

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, we study cluster sets and essential cluster sets for Sobolev functions and quasiharmonic functions (i.e., continuous quasiminimizers). We develop their basic theory with a particular emphasis on when they coincide and when they are connected. As a main result, we obtain that if a Sobolev function u on an open set Ω has boundary values f in Sobolev sense and f |∂Ω is continuous at x 0 ∈ ∂Ω, then the essential cluster set (u, x 0,Ω) is connected. We characterize precisely in which metric spaces this result holds. Further, we provide some new boundary regularity results for quasiharmonic functions. Most of the results are new also in the Euclidean case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer, London, 2001.

    MATH  Google Scholar 

  2. M. Biegert and M. Warma, Regularity in capacity and the Dirichlet Laplacian, Potential Anal. 25 (2006), 289–305.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Björn, Removable singularities for bounded p-harmonic and quasi(super)harmonic functions on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 71–95.

    MATH  MathSciNet  Google Scholar 

  4. A. Björn, A weak Kellogg property for quasiminimizers, Comment. Math. Helv. 81 (2006), 809–825.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Björn, Weak barriers in nonlinear potential theory, Potential Anal. 27 (2007), 381–387.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Björn, A regularity classification of boundary points for p-harmonic functions and quasiminimizers, J. Math. Anal. Appl. 338 (2008), 39–47.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Björn and J. Björn, Boundary regularity for p-harmonic functions and solutions of the obstacle problem, preprint, LiTH-MAT-R-2004-09, Linköping, 2004.

  8. A. Björn and J. Björn, Boundary regularity for p-harmonic functions and solutions of the obstacle problem, J. Math. Soc. Japan 58 (2006), 1211–1232.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Björn and J. Björn, Approximations by regular sets and Wiener solutions in metric spaces, Comment. Math. Univ. Carolin. 48 (2007), 343–355.

    MATH  MathSciNet  Google Scholar 

  10. A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, in preparation.

  11. A. Björn, J. Björn and N. Shanmugalingam, The Dirichlet problem for p-harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173–203.

    MATH  MathSciNet  Google Scholar 

  12. A. Björn, J. Björn and N. Shanmugalingam, The Perron method for p-harmonic functions, J. Differential Equations 195 (2003), 398–429.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Björn, J. Björn, and N. Shanmugalingam, Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces, Houston J. Math. 34 (2008), 1197–1211.

    MATH  MathSciNet  Google Scholar 

  14. A. Björn and N. Marola, Moser iteration for (quasi)minimizers on metric spaces, Manuscripta Math. 121 (2006), 339–366.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Björn and O. Martio, Pasting lemmas and characterizations of boundary regularity for quasiminimizers, Results Math. 55 (2009), 265–279

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Björn, Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math. 46 (2002), 383–403.

    MATH  MathSciNet  Google Scholar 

  17. J. Cheeger, Differentiability of Lipschitz functions on metric spaces, Geom. Funct. Anal. 9 (1999), 428–517.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge Univ. Press, Cambridge, 1966.

    Book  MATH  Google Scholar 

  19. R. F. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 67 (1977), 25–39.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31–46.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Giaquinta and E. Giusti, Quasi-minima Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 79–107.

    MATH  MathSciNet  Google Scholar 

  22. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, Mineola, NY, 2006.

    MATH  Google Scholar 

  23. J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, Ann. of Math. (2) 167 (2008), 575–599.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. V. Keldysh, On the solubility and stability of the Dirichlet problem, Uspekhi Mat. Nauk. 8 (1941), 171–231; English translation in 11 papers on Differential Equations, Functional Analysis and Measure Theory, Amer. Math. Soc. Transl. 51, Amer. Math. Soc., Providence, RI, 1966, pp. 1–73.

    MATH  Google Scholar 

  26. T. Kilpeläinen, J. Kinnunen, and O. Martio, Sobolev spaces with zero boundary values on metric spaces, Potential Anal. 12 (2000), 233–247.

    Article  MathSciNet  Google Scholar 

  27. T. Kilpeläinen and P. Lindqvist, Nonlinear ground states in irregular domains, Indiana Univ. Math. J. 49 (2000), 325–331.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Kinnunen and O. Martio, The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math. 21 (1996), 367–382.

    MATH  MathSciNet  Google Scholar 

  29. J. Kinnunen and O. Martio, Choquet property for the Sobolev capacity in metric spaces, in Proceedings on Analysis and Geometry (Novosibirsk, Akademgorodok, 1999), Sobolev Institute Press, Novosibirsk, 2000, pp. 285–290.

    Google Scholar 

  30. J. Kinnunen and O. Martio, Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), 459–490.

    MATH  MathSciNet  Google Scholar 

  31. J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), 401–423.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Koskela and P. MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), 1–17.

    MATH  MathSciNet  Google Scholar 

  33. O. Martio, Boundary behavior of quasiminimizers and Dirichlet finite PWB solutions in the borderline case, Report in Math. 440, University of Helsinki, Helsinki, 2006.

    Google Scholar 

  34. N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243–279.

    MATH  MathSciNet  Google Scholar 

  35. N. Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), 1021–1050.

    MATH  MathSciNet  Google Scholar 

  36. W. P. Ziemer, Boundary regularity for quasiminima, Arch. Rational Mech. Anal. 92 (1986), 371–382.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Björn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björn, A. Cluster sets for sobolev functions and quasiminimizers. JAMA 112, 49–77 (2010). https://doi.org/10.1007/s11854-010-0025-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-010-0025-0

Navigation