Skip to main content
Log in

Bounded harmonic mappings

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Denote by B(τ) the class of all complex functions of the form

$$ f(z) \equiv \tau + \sum\limits_{n = 1}^\infty {(a_n (f)z^n + \overline {b_n (f)} \bar z^n )} $$

that are harmonic in the open unit disk ⅅ with f (ⅅ) ⊂ ⅅ. Both B(τ) and some of its closed convex subsets are strongly convex, e.g.,

$$ \Lambda (\tau ) = \{ f \in {\rm B}(\tau ):b_n (f) = 0 for all n \geqslant 1\} . $$

Simple extremal problems in B(τ) may have nontrivial solutions. To find them, we present various methods: the method of subordination, the Poisson integral, and calculus of variations. For instance, by analogy to the known result

$$ a_n (\Lambda (\tau )) = \{ w:|w| \leqslant 1 - |\tau |^2 \} , $$

we find the variability regions

$$ a_n (B(\tau )) = b_n (B(\tau )) = \{ w:|w| \leqslant \phi (1/\phi ^{ - 1} (|\tau |))\} , $$

where

$$ \phi (x) \equiv \frac{1} {\pi }\int_0^\pi {\frac{{x + \cos t}} {{\sqrt {x^2 + 2x\cos t + 1} }}} dt. $$

. In the case n = 1, |τ| < 2/π (resp., |τ| = 2/π), the extremal functions realizing points of the circle {w: |w| = φ (1/φ−1(|τ|))} are univalent self-mappings of the disk ⅅ (resp., univalent mappings of ⅅ onto a half unit disk).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Akhiezer, The Calculus of Variations, Blaisdell, Boston, 1962.

    Google Scholar 

  2. S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992.

  3. V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, D. Reidel, Dordrecht, 1986.

    MATH  Google Scholar 

  4. H. Chen, P. M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc. 128 (2000), 3231–3240.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25.

    MATH  MathSciNet  Google Scholar 

  6. M. Dorff and M. Nowak, Landau’s theorem for planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004), 151–158.

    MATH  MathSciNet  Google Scholar 

  7. P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.

    Google Scholar 

  8. P. L. Duren, Univalent Functions, Springer, 1983.

  9. P. L. Duren, Harmonic Mappings in the Plane, Cambridge University Press, 2004.

  10. P. L. Duren and G. Schober, Linear extremal problems for harmonic mappings of the disk, Proc. Amer. Math. Soc. 106 (1989), 967–973.

    MATH  MathSciNet  Google Scholar 

  11. A. W. Goodman, Univalent Functions, vols. I–II, Mariner, Tampa, FL, 1983.

    Google Scholar 

  12. A. Grigoryan, Landau and Bloch theorems for harmonic mappings, Complex Var. Elliptic Equ. 51 (2006), 81–87.

    MATH  MathSciNet  Google Scholar 

  13. A. Grigoryan and W. Szapiel, An existence theorem for harmonic homeomorphisms with a given range and some convergence theorems, Complex Var. Elliptic Equ. 52 (2007), 341–350.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. J. Hallenbeck and T. H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, Pitman, Boston, 1984.

    MATH  Google Scholar 

  15. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.

    MATH  Google Scholar 

  16. R. B. Holmes, Geometric Functional Analysis and its Applications, Springer, 1975.

  17. V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), 51–63.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Koczan and W. Szapiel, Extremal problems in some classes of measures (I–IV), Complex Variables Theory Appl. 1 (1983), 347–374, 375–387, Ann. Univ. Mariae Curie-SkŁodowska Sect. A. 43 (1989), 31–53, 55–68.

    MATH  MathSciNet  Google Scholar 

  19. W. Magnus, F. Oberhettinger and P. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, 1966.

  20. H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.

    MATH  Google Scholar 

  21. T. Sheil-Small, Complex Polynomials, Cambridge University Press, 2002.

  22. W. Sierpiński, Sur les funtions d’ensemble additives et continues, Fund.Math. 3 (1992), 240–246.

    Google Scholar 

  23. M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.

    MATH  Google Scholar 

  24. S. Verblunsky, Inequalities for the derivatives of a bounded harmonic function, Proc. Cambridge Philos. Soc. 44 (1948), 155–158.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Szapiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szapiel, W. Bounded harmonic mappings. JAMA 111, 47–76 (2010). https://doi.org/10.1007/s11854-010-0012-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-010-0012-5

Navigation