Skip to main content
Log in

On the linear wave regime of the Gross-Pitaevskii equation

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study long-wavelength asymptotics for the Gross-Pitaevskii equation corresponding to perturbations of a constant state of modulus one. We exhibit lower bounds on the first occurrence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Alazard and R. Carles, WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 959–977.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Berlin, to appear.

  3. S. Benzoni-Gavage, R. Danchin and S. Descombes, On the well-posedness of the Euler-Korteweg model in several space dimensions, Indiana Univ. Math. J. 56 (2007), 1499–1579.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Bethuel, P. Gravejat, J.-C. Saut and D. Smets, On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I, Int. Math. Res. Notices IMRN 2009, no. 14, 2700–2748.

  5. F. Bethuel, R. L. Jerrard and D. Smets, On the NLS dynamics for infinite energy vortex configurations on the plane, Rev. Mat. Iberoamericana 24 (2008), 671–702.

    MATH  MathSciNet  Google Scholar 

  6. F. Bethuel and D. Smets, A remark on the Cauchy problem for the 2D Gross-Pitaevskii equation with nonzero degree at infinity, Differential Integral Equations 20 (2007), 325–338.

    MathSciNet  Google Scholar 

  7. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981), 209–246.

    MATH  MathSciNet  Google Scholar 

  8. R. Carles, Semi-classical Analysis for Nonlinear Schrödinger Equations, World Scientific Publ. Co. Pte. Ltd., Hackensack, NJ, 2008.

    Book  MATH  Google Scholar 

  9. T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, 1998.

  10. D. Chiron and F. Rousset, Geometric optics and boundary layers for nonlinear Schrödinger equations, Comm. Math. Phys. 288 (2009), 503–546.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Chiron and F. Rousset, The KdV/KP-I limit of the nonlinear Schrödinger equation, preprint.

  12. T. Colin and A. Soyeur, Some singular limits for evolutionary Ginzburg-Landau equations, Asymptotic Anal. 13 (1996), 361–372.

    MATH  MathSciNet  Google Scholar 

  13. J. E. Colliander and R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, Internat. Math. Res. Notices 1998, no. 7, 333–358.

    Google Scholar 

  14. F. Coquel, G. Dehais, D. Jamet, O. Lebaigue and N. Seguin, Extended formulations for Van der Waals models. Application to finite volume methods, in preparation.

  15. R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup. 35 (2002), 27–75.

    MATH  MathSciNet  Google Scholar 

  16. A. Friedman, Partial Differential Equations, Robert E. Krieger Publ. Co., Huntington, N.Y., 1976.

    Google Scholar 

  17. C. Gallo, Schrödinger group on Zhidkov spaces, Adv. Differential Equations 9 (2004), 509–538.

    MATH  MathSciNet  Google Scholar 

  18. C. Gallo, TheCauchy problemfor defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, Comm. Partial Differential Equations 33 (2008), 729–771.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Gérard, Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire, Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, Exp. No. XIII, École Polytechnique Palaiseau.

  20. P. Gérard, The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 765–779.

    Article  MATH  Google Scholar 

  21. J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), 50–68.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc. 126 (1998), 523–530.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Gustafson, K. Nakanishi and T. P. Tsai, Scattering for the Gross-Pitaevskii equation, Math. Res. Lett. 13 (2006), 273–285.

    MATH  MathSciNet  Google Scholar 

  24. L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  25. R. L. Jerrard and D. Spirn, Refined Jacobian estimates and Gross-Pitaevskii vortex dynamics, Arch. Ration. Mech. Anal. 190 (2008), 425–475.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955–980.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Klainerman, Uniformdecay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321–332.

    Article  MATH  MathSciNet  Google Scholar 

  28. F. H. Lin and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Comm. Math. Phys. 200 (1999), 249–274.

    Article  MATH  MathSciNet  Google Scholar 

  29. F. H. Lin and P. Zhang, Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain, Arch. Rat. Mech. Anal. 179 (2006), 79–107.

    Article  MATH  MathSciNet  Google Scholar 

  30. T. Sideris, The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit, Indiana Univ. Math. J. 40 (1991), 535–550.

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Sideris, Delayed singularity formation in 2D compressible flow, Amer. J. Math. 119 (1997), 371–422.

    Article  MATH  MathSciNet  Google Scholar 

  32. R. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of the wave equations, Duke Math. J. 44 (1977), 705–774.

    Article  MATH  MathSciNet  Google Scholar 

  33. P. Zhang, Semiclassical limit of nonlinear Schrödinger equation. II, J. Partial Differential Equations 15 (2002), 83–96.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Béthuel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Béthuel, F., Danchin, R. & Smets, D. On the linear wave regime of the Gross-Pitaevskii equation. JAMA 110, 297–338 (2010). https://doi.org/10.1007/s11854-010-0008-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-010-0008-1

Keywords

Navigation