Skip to main content
Log in

Density of specific Strebel points and its consequences

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

It is a well-known fact that Strebel points (i.e., the equivalence classes of quasiconformal maps satisfying the frame mapping condition of Strebel) are dense in Teichmüller spaces. In various areas, one has to deal with nowhere dense sets in the universal Teichmüller space T, and it is important to knowwhether a given nowhere dense subset ET contains the Strebel points and, if so, whether these points are dense in E.

In this paper, we establish that such points are dense in the set of maps with equal Teichmüller and Grunsky norms. This allows us to solve completely several old problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Remarks on the Neumann-Poincaré integral equation, Pacific J. Math. 2 (1952), 271–280.

    MATH  MathSciNet  Google Scholar 

  2. L. V. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975–978.

    MATH  MathSciNet  Google Scholar 

  3. S. Dineen, The Schwarz Lemma, Clarendon Press, Oxford, 1989.

    MATH  Google Scholar 

  4. C. J. Earle, I. Kra and S. L. Krushkal, Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 944 (1994), 927–948.

    Article  MathSciNet  Google Scholar 

  5. C. J. Earle and Zong Li, Isometrically embedded polydisks in infinite dimensional Teichmüller spaces, J. Geom. Anal. 9 (1999), 51–71.

    MATH  MathSciNet  Google Scholar 

  6. C. J. Earle and S. Mitra, Variation of moduli under holomorphic motions, in In the Tradition of Ahlfors and Bers (Stony Brook, NY, 1998), Contemporary Mathematics 256, Amer. Math. Soc., Providence, RI, 2000, pp. 39–67.

    Google Scholar 

  7. F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Amer. Math. Soc., Providence, RI, 2000.

    MATH  Google Scholar 

  8. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, RI, 1969.

    MATH  Google Scholar 

  9. H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z. 45 (1939), 29–61.

    Article  MathSciNet  Google Scholar 

  10. A. D. Ioffe and V.M. Tikhomirov, Theory of Extremal Problems, North-Holland, Amsterdam-New York, 1979 (Engl. transl. from Russian edition, Moscow, Nauka, 1974).

    MATH  Google Scholar 

  11. S. L. Krushkal, Quasiconformal Mappings and Riemann Surfaces, Wiley, New York, 1987.

    Google Scholar 

  12. S. L. Krushkal, Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings, Comment. Math. Helv. 64 (1989), 650–660.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. L. Krushkal, Plurisubharmonic features of the Teichmüller metric, Publ. Inst. Math. (Beograd) (N.S.) 75(89) (2004), 119–138.

    Article  MathSciNet  Google Scholar 

  14. S. L. Krushkal, Quasiconformal extensions and reflections, Ch. 11 in Handbook of Complex Analysis: Geometric Function Theory, Vol. II (R. Kühnau, ed.), Elsevier Science, Amsterdam, 2005, pp. 507–553.

    Chapter  Google Scholar 

  15. S. L. Krushkal, Beyond Moser’s conjecture on Grunsky inequalities, Georgian Math. J. 12 (2005), 485–492.

    MATH  MathSciNet  Google Scholar 

  16. S. L. Krushkal, Strengthened Moser’s conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues, Cent. Eur. J. Math. 5 (2007), 551–580.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. L. Krushkal, Rational approximation of holomorphic functions and geometry of Grunsky coefficients, in Complex Analysis and Dynamical Systems III, Contemporary Mathematics 445, Amer. Math. Soc., Providence, RI, 2008, pp. 219–236.

    Google Scholar 

  18. S. L. Krushkal, The dilatation function of a holomorphic isotopy, Funct. Approx. Comment. Math., 40 (2009), 75–90.

    MATH  MathSciNet  Google Scholar 

  19. S. L. Krushkal and R. Kühnau, A quasiconformal dynamic property of the disk, J. Analyse Math. 72 (1997), 93–103.

    Article  MATH  Google Scholar 

  20. S. L. Krushkal and R. Kühnau, Grunsky inequalities and quasiconformal extension, Israel J. Math. 152 (2006), 49–59.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Kühnau, Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen, Math. Nachr. 48 (1971), 77–105.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Kühnau,Möglichst konforme Spiegelung an einer Jordankurve, Jber. Deutsch.Math.-Verein. 90 (1988), 90–109.

  23. R. Kühnau, Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit? Comment. Math. Helv. 61 (1986), 290–307.

    Article  MATH  MathSciNet  Google Scholar 

  24. N. Lakic, Strebel points, in Lipa’s Legacy, Contemporary Mathematics 211, Amer. Math. Soc., Providence, RI, 2001, pp. 417–431.

    Google Scholar 

  25. D. Minda, The strong form of Ahlfors’ lemma, Rocky Mountain J. Math. 17 (1987), 457–461.

    Article  MATH  MathSciNet  Google Scholar 

  26. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer.Math. Soc. 61 (1949), 545–551.

    Article  MathSciNet  Google Scholar 

  27. Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer, Berlin, 1992.

    Google Scholar 

  28. H. L. Royden, Automorphisms and isometries of Teichmüller space, in Advances in the Theory of Riemann Surfaces, Princeton Univ. Press, Princeton, 1971, pp. 369–383.

    Google Scholar 

  29. M. Schiffer, Fredholm eigenvalues and Grunsky matrices, Ann. Polon. Math. 39 (1981), 149–164.

    MathSciNet  Google Scholar 

  30. G. Schober, Continuity of curve functionals and a technique involving quasiconformalmapping, Arch. Rational Mech. Anal. 29 (1968), 378–389.

    Article  MATH  MathSciNet  Google Scholar 

  31. Y. L. Shen, Pull-back operators by quasisymmetric functions and invariant metrics on Teichmüller spaces, Complex Variables 42 (2000), 289–307.

    MATH  Google Scholar 

  32. K. Strebel, On the existence of extremal Teichmueller mappings, J. Analyse Math 30 (1976), 464–480.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Krushkal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krushkal, S.L. Density of specific Strebel points and its consequences. JAMA 110, 271–296 (2010). https://doi.org/10.1007/s11854-010-0007-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-010-0007-2

Keywords

Navigation