Skip to main content
Log in

The explosion problem in a flow

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider the explosion problem in an incompressible flow introduced in [5]. We use a novel L pL estimate for elliptic advection-diffusion problems to show that the explosion threshold obeys a positive lower bound which is uniform in the advecting flow. We also identify the flows for which the explosion threshold tends to infinity as their amplitude grows and obtain an effective description of the explosion threshold in the strong flow asymptotics in two-dimensional cellular flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Audoly, H. Berestycki and Y. Pomeau, Réaction-diffusion en écoulement stationnaire rapide, C. R. Acad. Sci. Paris, Sér. II 328 (2000), 255–262.

    MATH  Google Scholar 

  2. M. Belk and V. Volpert, Modeling of heat explosion with convection, Chaos 14 (2004), 263–273.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Berestycki, X. Cabre and L. Ryzhik, in preparation.

  4. H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys. 253 (2005), 451–480.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Berestycki, L. Kagan, G. Joulin and G. Sivashinsky, The effect of stirring on the limits of thermal explosion, Combustion Theory and Modelling 1 (1997), 97–112.

    Article  MATH  Google Scholar 

  6. H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for u t − Δu = g(u) revisited, Adv. Differential Equations 1 (1996), 73–90.

    MATH  MathSciNet  Google Scholar 

  7. H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), 443–469.

    MATH  MathSciNet  Google Scholar 

  8. X. Cabré and A. Capella, Regularity of radial minimizers and extremal solutions of semiliniar elliptic equations, J. Funct. Anal. 238 (2006), 709–733.

    MATH  MathSciNet  Google Scholar 

  9. S. Childress, Alpha-effect in flux ropes and sheets, Phys. Earth Planet Int. 20 (1979), 172–180.

    Article  Google Scholar 

  10. P. Constantin, A. Kiselev, L. Ryzhik and A. Zlatos, Diffusion and mixing in a fluid flow, Ann. of Math. (2) 168 (2008), 643–674.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Constantin, A. Novikov and L. Ryzhik, Relaxation in reactive flows, Geom. Funct. Anal. 18 (2008), 1145–1167.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Crandall and P. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), 207–218.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Fannjiang and G. Papaniclaou, Convection enhanced diffusion for periodic flows, SIAM J. Appl. Math. 54 (1994), 333–408.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Feller, On second order differential operators, Ann. of Math. (2) 61 (1955), 90–105.

    Article  MathSciNet  Google Scholar 

  15. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York, 1969.

    Google Scholar 

  16. M. Freidlin, Reaction-diffusion in incompressible fluid: Asymptotic problems, J. Differential Equations 179 (2002), 44–96.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, second edn., Springer, New York, 1998.

    MATH  Google Scholar 

  18. A. Friedman, The asymptotic behavior of the first real eigenvalue of a second order elliptic operator with a small parameter in the highest derivatives, Indiana Univ. Math. J. 22 (1973), 1005–1015.

    Article  MATH  Google Scholar 

  19. N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: Dynamic case, NoDEA Nonlinear Differential Equations Appl. 15 (2008), 115–145.

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math. Anal. 38 (2006/07), 1423–1449.

    Article  MathSciNet  Google Scholar 

  21. S. Heinze, Diffusion-advection in cellular flows with large Péclet numbers, Arch. Rational Mech. Anal. 168 (2003), 329–342.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Joseph and T. Lundgren, Quasilinear Dirichlet problem driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269.

    MathSciNet  Google Scholar 

  23. G. Joulin, A. Mikishev and G. Sivashinsky, A Semenov-Rayleigh-Bernard problem, preprint, 1996.

  24. J. Keener and H. Keller, Positive solutions of convex nonlinear eigenvalue problems, J. Differential Equations 16 (1974), 103–125.

    Article  MATH  MathSciNet  Google Scholar 

  25. Y. Kifer, Random Perturbations of Dynamical Systems, Birkhäuser Boston, Boston, 1988.

    MATH  Google Scholar 

  26. A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 309–358

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Koralov, Randomperturbations of two-dimensionalHamiltonian flows, Probab. Theory Related Fields 129 (2004), 37–62.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Mandl, Analytical Treatment of One-Dimensional Markov Processes, Springer, Prague, Academia, 1968.

    MATH  Google Scholar 

  29. A. S. Merzhanov and E. A. Shtessel, Free convection and thermal explosion in reactive systems, Astronaut. Acta 18 (1973), 191–199.

    Google Scholar 

  30. G. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris, Sér. I 330 (2000), 997–1002.

    MATH  MathSciNet  Google Scholar 

  31. A. Novikov, G. Papanicolaou and L. Ryzhik, Boundary layers for cellular flows at high Péclet numbers, Comm. Pure Appl. Math. 58 (2005), 867–922.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Novikov and L. Ryzhik, Bounds on the speed of propagation of the KPP fronts in a cellular flow, Arch. Rational Mech. Anal. 184 (2007), 23–48.

    Article  MATH  MathSciNet  Google Scholar 

  33. M. N. Rosenbluth, H. L. Berk, I. Doxas and W. Horton, Effective diffusion in laminar convective flows, Phys. Fluids 30 (1987), 2636–2647.

    Article  MATH  Google Scholar 

  34. L. Ryzhik and A. Zlatos, KPP pulsating front speed-up by flows, Commun. Math. Sci. 5 (2007), 575–593.

    MATH  MathSciNet  Google Scholar 

  35. N. Semenov, Chemical Kinetics and Chain Reaction, Clarendon Press, Oxford, 1935.

    Google Scholar 

  36. B. Shraiman, Diffusive transport in a Rayleigh-Bernard convection cell, Phys. Rev. A 36 (1987), 261–267.

    Article  Google Scholar 

  37. A. M. Soward, Fast dynamo action in fluid flow, J. Fluid Mech. 180 (1987), 267–295.

    Article  MATH  Google Scholar 

  38. Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (translated from the Russian by Donald H. McNeill), Consultants Bureau [Plenum], New York, 1985.

    Google Scholar 

  39. A. Zlatos, Pulsating front speed-up and quenching of reaction by fast advection, Nonlinearity 20 (2007), 2907–2921.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berestycki, H., Kiselev, A., Novikov, A. et al. The explosion problem in a flow. JAMA 110, 31–65 (2010). https://doi.org/10.1007/s11854-010-0002-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-010-0002-7

Keywords

Navigation